• Citations Per Year
Learn More
This paper presents a one-step method to fabricate superhydrophobic surfaces with extremely controllable adhesion based on PDMS microwell arrays. The microwell array structures are rapidly produced on PDMS films by a point-by-point femtosecond laser scanning process. The as-prepared superhydrophobic surfaces show water controllable adhesion that ranges from(More)
A simple and efficient technique for large-area manufacturing of concave microlens arrays (MLAs) on silica glasses with femtosecond (fs)-laser-enhanced chemical wet etching is demonstrated. By means of fs laser in situ irradiations followed by the hydrofluoric acid etching process, large area close-packed rectangular and hexagonal concave MLAs with(More)
A fast and single-step process is developed for the fabrication of low-cost, high-quality, and large-area concave microlens arrays (MLAs) by the high-speed line-scanning of femtosecond laser pulses. Each concave microlens can be generated by a single laser pulse, and over 2.78 million microlenses were fabricated on a 2 × 2 cm(2) polydimethylsiloxane (PDMS)(More)
In this paper, we present a new approach to the tunable adhesive superhydrophobic surfaces consisting of periodic hydrophobic patterns and superhydrophobic structures by femtosecond (fs) laser irradiation on silicon. The surfaces are composed of periodic hydrophobic patterns (triangle, circle, and rhombus) and superhydrophobic structures (dual-scale spikes(More)
Netlike or porous microstructures are highly desirable in metal implants and biomedical monitoring applications. However, realization of such microstructures remains technically challenging. Here, we report a facile and environmentally friendly method to prepare netlike microstructures on a stainless steel by taking the full advantage of the liquid-mediated(More)
In this paper, the tunable optical trapping dependence on wavelength of incident beam is theoretically investigated based on numerical simulations. The Monte Carlo method is taken into account for exploring the trapping characteristics such as average deviation and number distribution histogram of nanoparticles. It is revealed that both the width and the(More)
Large-area close-packed microlens arrays (MLAs) are highly desirable for structured light and integrated optical applications. However, efficient realization of ultralarge area MLAs with a high fill factor is still technically challenging, especially on glass material. In this Letter we propose a high-efficiency MLA fabrication method using single-pulsed(More)
Rapid and facile creation of three-dimensional (3D) microcoils array in a "lab-on-a-chip" platform is a big challenge in micromachining. Here we report a method based on an improved femtosecond-laser wet-etch (FLWE) technology and metal-microsolidifying process for the fabrication of 3D microcoils array inside fused silica. Based on this approach, we(More)
Microlenses with multiple focal lengths play an important role in three-dimensional imaging and the real-time detection of unconfined or fluctuating targets. In this Letter, we present a novel method of fabricating lens-on-lens microstructures (LLMs) using a two-step femtosecond laser wet etching process. A 3×3 LLM array was made with a diameter of 129.0(More)
Large-scale high quality microlens arrays (MLAs) play an important role in enhancing the imaging quality of CCD and CMOS as well as the light extraction efficiency of LEDs and OLEDs. To meet the requirement in MLAs' wide application areas, a rapid fabrication method to fabricate large-scale MLAs with high quality, high fill factor and high uniformity is(More)