Hanzheng Wang

Learn More
In previous research, a watershed-based algorithm was shown to be useful for automatic lesion segmentation in dermoscopy images, and was tested on a set of 100 benign and malignant melanoma images with the average of three sets of dermatologist-drawn borders used as the ground truth, resulting in an overall error of 15.98%. In this study, to reduce the(More)
In this paper, we demonstrate a fiber pigtailed thin wall capillary coupler for excitation of Whispering Gallery Modes (WGMs) of microsphere resonators. The coupler is made by fusion-splicing an optical fiber with a capillary tube and consequently etching the capillary wall to a thickness of a few microns. Light is coupled through the peripheral contact(More)
Single-cell research is essential for understanding cell heterogeneity, cell differentiation, and carcinogenesis, among other important cellular processes. New techniques for intracellular pH monitoring are urgently needed to gain new insights into single-cell responses to external stimuli. In this study, fiber-optic reflection-based pH micro (μ)-probes(More)
BACKGROUND/PURPOSE Automatic lesion segmentation is an important part of computer-based image analysis of pigmented skin lesions. In this research, a watershed algorithm is developed and investigated for adequacy of skin lesion segmentation in dermoscopy images. METHODS Hair, black border and vignette removal methods are introduced as preprocessing steps.(More)
This Letter reports a polymer optical fiber (POF) based large strain sensor based on the multimode interference (MMI) theory for the application of structural health monitoring. A section of POFs is sandwiched between two silica single mode fibers to construct a single-mode-multimode-single-mode structure that produces a MMI spectrum. The strain sensing(More)
Fiber optic probes for chemical sensing based on the extraordinary optical transmission (EOT) phenomenon are designed and fabricated by perforating subwavelength hole arrays on the gold film coated optical fiber endface. The device exhibits a red shift in response to the surrounding refractive index increases with high sensitivity, enabling a(More)
pH sensing at the single-cell level without negatively affecting living cells is very important but still a remaining issue in the biomedical studies. A 70 μm reflection-mode fiber-optic micro-pH sensor was designed and fabricated by dip-coating thin layer of organically modified aerogel onto a tapered spherical probe head. A pH sensitive fluorescent dye(More)
A fiber inline Michelson interferometer was fabricated by micromachining a step structure at the tip of a single-mode optical fiber using a femtosecond laser. The step structure splits the fiber core into two reflection paths and produces an interference signal. A fringe visibility of 18 dB was achieved. Temperature sensing up to 1000°C was demonstrated(More)
An all-in-fiber prototype optofluidic device was fabricated by femtosecond laser irradiation and subsequent selective chemical wet etching. Horizontal and vertical microchannels can be flexibly created into an optical fiber to form a fluidic cavity with inlets/outlets. The fluidic cavity also functions as an optical Fabry-Perot cavity in which the filled(More)
A porous-wall hollow glass microsphere (PW-HGM) was investigated as an optical resonator for chemical vapor sensing. A single mode optical fiber taper was used to interrogate the microresonator. Adsorption of chemical molecules into the nanosized pores induced a refractive index change of the thin wall and thus a shift in its resonance spectrum. The PW-HGM(More)