Hany S. Ibrahim

Learn More
The binding affinity of human serum albumin (HSA) to three antimalarial indolone-N-oxide derivatives, INODs, was investigated under simulated physiological conditions using fluorescence spectroscopy in combination with UV-vis absorption and circular dichroism (CD) spectroscopy. Analysis of fluorescence quenching data of HSA by these compounds at different(More)
Essential oils of Juniperus phoenicea L. leaves cultivated in 3 regions, Korbos, Matmata, and Tabarka of Tunisia were obtained by hydrodistillation (HD), steam distillation (SD), and Soxhlet (SH) extraction methods. The essential oils were analyzed and quantified by capillary gas chromatography using flame ionization detection (GC-FID) and mass spectrometry(More)
More than 40 years after its discovery, artemisinin has become the most promising antimalarial agent. However, no intravenous formulation is available due to its poor aqueous solubility. Here, we report the preparation, characterization, and in vitro and in vivo biological evaluation of biodegradable albumin-bound artemisinin nanoparticles. The(More)
A series of 66 new indolone-N-oxide derivatives was synthesized with three different methods. Compounds were evaluated for in vitro activity against CQ-sensitive (3D7), CQ-resistant (FcB1), and CQ and pyrimethamine cross-resistant (K1) strains of Plasmodium falciparum (P.f.), as well as for cytotoxic concentration (CC(50)) on MCF7 and KB human tumor cell(More)
Many bis-isatins and isatins with hydrazide extension were reported to have a potential anti-proliferative effects against different cancer cell lines and cancer targets. In this study, four series of bis-isatins with hydrazide linkers were synthesized. These compounds were investigated for their antitumor activity by assessing their cytotoxic potency(More)
OBJECTIVES Indolone-N-oxides are characterized by the presence of a highly reactive pharmacophore, the nitrone moiety (C=N(+)-O(-)), which undergoes oxidation-reduction reactions. The aims of the present study were to: (i) evaluate the in vitro activity of the parent compound, designated as compound 1, against 34 fresh clinical isolates of Plasmodium(More)
Indolone-N-oxides exert high parasiticidal activity at the nanomolar level in vitro against Plasmodium falciparum, the parasite responsible for malaria. The bioreductive character of these molecules was investigated using cyclic voltammetry and EPR spectroelectrochemistry to examine the relationship between electrochemical behavior and antimalarial activity(More)
Indolone-N-oxides (INODs) are bioreducible and possess remarkable anti-malarial activities in the low nanomolar range in vitro against different Plasmodium falciparum (P. falciparum) strains and in vivo. INODs have an original mechanism of action: they damage the host cell membrane without affecting non-parasitized erythrocytes. These molecules produce a(More)
We recently showed that the indolone-N-oxides can be promising candidates for the treatment of chloroquine-resistant malaria. However, the in vivo assays have been hampered by the very poor aqueous solubility of these compounds resulting in poor and variable activity. Here, we describe the preparation, characterization and in vivo evaluation of(More)
New series of benzenesulfonamide derivatives incorporating pyrazole and isatin moieties were prepared using celecoxib as lead molecule. Biological evaluation of the target compounds was performed against the metalloenzyme carbonic anhydrase (CA, EC and more precisely against the human isoforms hCA I, II (cytosolic), IX and XII (transmembrane,(More)