Learn More
We present a generative model for isotropic bidirectional reflectance distribution functions (BRDFs) based on acquired reflectance data. Instead of using analytical reflectance models, we represent each BRDF as a dense set of measurements. This allows us to interpolate and extrapolate in the space of acquired BRDFs to create new BRDFs. We treat each(More)
Face Transfer is a method for mapping videorecorded performances of one individual to facial animations of another. It extracts visemes (speech-related mouth articulations), expressions, and three-dimensional (3D) pose from monocular video or film footage. These parameters are then used to generate and drive a detailed 3D textured face mesh for a target(More)
Surface elements (surfels) are a powerful paradigm to efficiently render complex geometric objects at interactive frame rates. Unlike classical surface discretizations, i.e., triangles or quadrilateral meshes, surfels are point primitives without explicit connectivity. Surfel attributes comprise depth, texture color, normal, and others. As a pre-process, an(More)
We have measured 3D face geometry, skin reflectance, and subsurface scattering using custom-built devices for 149 subjects of varying age, gender, and race. We developed a novel skin reflectance model whose parameters can be estimated from measurements. The model decomposes the large amount of measured skin data into a spatially-varying analytic BRDF, a(More)
We present a real-time algorithm to estimate the 3D pose of a previously unseen face from a single range image. Based on a novel shape signature to identify noses in range images, we generate candidates for their positions, and then generate and evaluate many pose hypotheses in parallel using modern graphics processing units (GPUs). We developed a novel(More)
In this paper we present two novel reflectance measurement procedures that requiresampling strategies. This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in whole or in part without payment of fee is granted for nonprofit educational and research purposes provided that all such whole or partial(More)
The proliferation of low-cost infrared cameras gives us a new angle for attacking many unsolved vision problems by leveraging a larger range of the electromagnetic spectrum. A first step to utilizing these images is to explore the statistics of infrared images and compare them to the corresponding statistics in the visible spectrum. In this paper, we(More)
Image rendering maps scene parameters to output pixel values; animation maps motion-control parameters to tra-jectory values. Because these mapping functions are usually multidimensional, nonlinear, and discontinuous, nd-ing input parameters that yield desirable output values is often a painful process of manual tweaking. Interactive evolution and inverse(More)
We describe automated technologies to probe the structure of neural tissue at nanometer resolution and use them to generate a saturated reconstruction of a sub-volume of mouse neocortex in which all cellular objects (axons, dendrites, and glia) and many sub-cellular components (synapses, synaptic vesicles, spines, spine apparati, postsynaptic densities, and(More)
We present a method for replacing facial performances in video. Our approach accounts for differences in identity, visual appearance, speech, and timing between source and target videos. Unlike prior work, it does not require substantial manual operation or complex acquisition hardware, only single-camera video. We use a 3D multilinear model to track the(More)