Learn More
Prohibitins are ubiquitous, abundant and evolutionarily strongly conserved proteins that play a role in important cellular processes. Using blue native electrophoresis we have demonstrated that human prohibitin and Bap37 together form a large complex in the mitochondrial inner membrane. This complex is similar in size to the yeast complex formed by the(More)
Prohibitins in eukaryotes consist of two subunits (PHB1 and PHB2) that together form a high molecular weight complex in the mitochondrial inner membrane. The evolutionary conservation and the ubiquitous expression in mammalian tissues of the prohibitin complex suggest an important function among eukaryotes. The PHB complex has been shown to play a role in(More)
Bacillus subtilis forms dormant spores upon nutrient depletion. Under favorable environmental conditions, the spore breaks its dormancy and resumes growth in a process called spore germination and outgrowth. To elucidate the physiological processes that occur during the transition of the dormant spore to an actively growing vegetative cell, we studied this(More)
BACKGROUND Metabolic and regulatory gene networks generally tend to be stable. However, we have recently shown that overexpression of the transcriptional activator Hap4p in yeast causes cells to move to a state characterized by increased respiratory activity. To understand why overexpression of HAP4 is able to override the signals that normally result in(More)
Mutants of Saccharomyces cerevisiae that lack a functional MSS51 gene are respiratory deficient due to the absence of cytochrome c oxidase subunit 1 (Cox1p). It has been previously suggested, but not formally proven, that Mss51p is required for translational activation of COX1 mRNA, rather than being involved in a subsequent step in the synthesis of Cox1p(More)
The variant specific surface glycoprotein (VSG) genes of T. brucei are expressed in telomeric expression sites. We have determined the structure of the active site in trypanosome variant 221a, which contains VSG gene 221, by analysis of cloned DNA segments that represent 65 kb of the 5'-flanking region of the VSG gene. In nuclear run-on experiments, 57 kb(More)
The yeast mitochondrial degradosome (mtEXO) is an NTP-dependent exoribonuclease involved in mitochondrial RNA metabolism. Previous purifications suggested that it was composed of three subunits. Our results suggest that the degradosome is composed of only two large subunits: an RNase and a RNA helicase encoded by nuclear genes DSS1 and SUV3, respectively,(More)
The mitochondrial prohibitin complex consists of two subunits (PHB1 of 32 kD and PHB2 of 34 kD), assembled into a membrane-associated supercomplex of approximately 1 MD. A chaperone-like function in holding and assembling newly synthesized mitochondrial polypeptide chains has been proposed. To further elucidate the function of this complex, structural(More)
We have previously demonstrated that the yeast Krebs cycle enzyme NAD(+)-dependent isocitrate dehydrogenase (Idh) binds specifically and with high affinity to the 5'-untranslated leader sequences of mitochondrial mRNAs in vitro and have proposed a role for the enzyme in the regulation of mitochondrial translation [Elzinga, S.D.J. et al. (2000) Curr. Genet.,(More)
RNA editing is the post-transcriptional alteration of the nucleotide sequence of RNA, which in trypanosome mitochondria is characterized by the insertion and deletion of uridine residues. It has recently been proposed that the information for the sequence alteration in Leishmania tarentolae is provided by small guide (g) RNAs encoded in the mitochondrial(More)