Hans-Werner Adolph

Learn More
MOTIVATION Functional annotation of unknown proteins is a major goal in proteomics. A key annotation is the prediction of a protein's subcellular localization. Numerous prediction techniques have been developed, typically focusing on a single underlying biological aspect or predicting a subset of all possible localizations. An important step is taken(More)
Cancrum oris or noma is a condition not well known in western Europe and North America. It is, however, a relatively common cause of mortality and disability in children of undeveloped areas of Africa, Asia, and South America. This paper describes the experience at Galmi Hospital, in the sub-Saharan region of South Africa in the Niger Republic, with 50(More)
We have investigated the influence of substrate binding on the zinc ion affinity of representatives from the three metallo-beta-lactamase subclasses, B1 (BcII from Bacillus cereus and BlaB from Chryseobacterium meningosepticum), B2 (CphA from Aeromonas hydrophila), and B3 (L1 from Stenotrophomonas maltophilia). By competition experiments with metal-free(More)
The performance of the AutoDock, GOLD and FlexX docking programs was evaluated for docking of dicarboxylic acid inhibitors into metallo-beta-lactamases (MBLs). GOLD provided the best overall performance, with RMSDs between experimental and docked structures of 1.8-2.6 A and a good correlation between the experimentally determined MBL-inhibitor affinities(More)
Lars Olsena,b, Ingrid Petterssonc, Lars Hemmingsend, Hans-Werner Adolphe & Flemming Steen Jørgensena,∗ aDepartment of Medicinal Chemistry, The Danish University of Pharmaceutical Sciences, Universitetsparken 2, DK-2100 Copenhagen, Denmark bDepartment of Mathematics and Physics, The Royal Veterinary and Agricultural University, DK-1871 Frederiksberg C,(More)
d- and l-captopril are competitive inhibitors of metallo-beta-lactamases. For the enzymes from Bacillus cereus (BcII) and Aeromonas hydrophila (CphA), we found that the mononuclear enzymes are the favored targets for inhibition. By combining results from extended x-ray absorption fine structure, perturbed angular correlation of gamma-rays spectroscopy, and(More)
We have applied pharmacophore generation, database searching, docking methodologies, and experimental enzyme kinetics to discover new structures for design of di-zinc metallo-beta-lactamase inhibitors. Based on crystal structures of class B1 metallo-beta-lactamases with a succinic acid and a mercapto-carboxylic acid inhibitor bound to the enzyme, two(More)
Extended x-ray absorption fine structure (EXAFS) spectroscopy was combined with thermodynamic and kinetic approaches to investigate zinc binding to a zinc finger (C2H2) and a tetrathiolate (C4) peptide. Both peptides represent structural zinc sites of proteins and rapidly bind a single zinc ion with picomolar dissociation constants. In competition with EDTA(More)
Metallo-beta-lactamases (MBLs) are targets for medicinal chemistry as they mediate bacterial resistance to beta-lactam antibiotics. Electrospray-ionization mass spectrometry (ESI-MS) was used to study the inhibition by a set of mercaptocarboxylates of two representative MBLs with different optimal metal stoichiometries for catalysis. BcII is a dizinc MBL(More)