Learn More
We present a direct evidence of Bloch surface waves (BSWs) waveguiding on ultrathin polymeric ridges, supported by near-field measurements. It is demonstrated that near-infrared BSWs sustained by a silicon-based multilayer can be locally coupled and guided through dielectric ridges of nanometric thickness with low propagation losses. Using a conventional(More)
At the end of the 1970s, it was confirmed that dielectric multilayers can sustain Bloch surface waves (BSWs). However, BSWs were not widely studied until more recently. Taking advantage of their high-quality factor, sensing applications have focused on BSWs. Thus far, no work has been performed to manipulate and control the natural surface propagations in(More)
Photonic Nanojets are highly localized wave fields emerging directly behind dielectric microspheres; if suitably illuminated. In this contribution we reveal how different illumination conditions can be used to engineer the photonic Nanojets by measuring them in amplitude and phase with a high resolution interference microscope. We investigate how the(More)
The optical properties of plano-convex refractive microlenses with low Fresnel Number (typically FN < 10) are investigated. It turns out that diffraction effects at the lens aperture limit the range of the effective focal length. The upper limit of the focal length is determined by the diffraction pattern of a pinhole with equal diameter. In addition(More)
Microlenses are widely studied in two main areas: fabrication and characterization. Nowadays, characterization draws more attention because it is difficult to apply test techniques to microlenses that are used for conventional optical systems. Especially, small microlenses on a substrate are difficult to characterize because their back focus often stays in(More)
Despite the progress in the engineering of structures to enhance photocurrent in thin film solar cells, there are few comprehensive studies which provide general and intuitive insight into the problem of light trapping. Also, lack of theoretical propositions which are consistent with fabrication is an issue to be improved. We investigate a real thin film(More)
Micro-optical systems based on refractive microlenses are investigated. These systems are integrated on a chemical chip. They focus an excitation beam into the detection volume (microliter or even submi-croliter scale) and collect the emitted light from fluorescent molecules. The fluorescence must be carefully separated by spatial and spectral filtering(More)
High Resolution Interference Microscopy (HRIM) is a technique that allows the characterization of amplitude and phase of electromagnetic wave-fields in the far-field with a spatial accuracy that corresponds to a few nanometers in the object plane. Emphasis is put on the precise determination of topological features in the wave-field, called phase(More)
In this work, we use a multi-heterodyne scanning near-field optical microscope to investigate the polarization and propagation of Bloch surface waves in an ultrathin ͑ϳ␭ /10͒ ridge waveguide. First, we show that the structure sustains three surface modes, and demonstrate selective excitation of each. Then, by numerically processing the experimental data, we(More)
We present a lamellar grating interferometer realized with microelectromechanical system technology. It is used as a time-scanning Fourier-transform spectrometer. The motion is carried out by an electrostatic comb drive actuator fabricated by silicon micromachining, particularly by silicon-on-insulator technology. For the first time to our knowledge, we(More)