Hans-Peter Brecht

Learn More
We develop a system for three-dimensional whole-body optoacoustic tomography of small animals for applications in preclinical research. The tomographic images are obtained while the objects of study (phantoms or mice) are rotated within a sphere outlined by a concave arc-shaped array of 64 piezocomposite transducers. Two pulsed lasers operating in the(More)
Optoacoustic tomography (OAT) is a hybrid imaging modality that combines the advantages of optical and ultrasound imaging. Most existing reconstruction algorithms for OAT assume that the ultrasound transducers employed to record the measurement data are point-like. When transducers with large detecting areas and/or compact measurement geometries are(More)
Optoacoustic (OA) tomography has demonstrated utility in identifying blood-rich malignancies in breast tissue. We describe the development and characterization of a laser OA imaging system for the prostate (LOIS-P). The system consists of a fiber-coupled Q-switched laser operating at 757 nm, a commercial 128-channel ultrasonic probe, a digital signal(More)
We present our findings from a real-time laser optoacoustic imaging system (LOIS). The system utilizes a Q-switched Nd:YAG laser; a standard 128-channel ultrasonic linear array probe; custom electronics and custom software to collect, process, and display optoacoustic (OA) images at 10 Hz. We propose that this system be used during preoperative mapping of(More)
A 3-D optoacoustic imaging system was used to visualize thermal lesions produced in vivo using high-intensity focused ultrasound (HIFU). A 7.5-MHz, surgical, focused transducer with a radius of curvature of 35 mm and an aperture diameter of 23 mm was used to generate HIFU. A pulsed laser, which could operate at 755 nm and 1064 nm, was used to illuminate(More)
The optoacoustic technique is noninvasive, has high spatial resolution, and potentially can be used to measure the total hemoglobin concentration ([THb]) continuously and accurately. We performed in vitro measurements in blood and in vivo tests in healthy volunteers. Our clinical protocol included rapid infusion of intravenous saline to simulate rapid(More)
Comprehensive characterization of wideband ultrasonic transducers and specifically optoacoustic detectors is achieved through the analysis of their frequency response as a function of the incident angle. The tests are performed under well-defined, repeatable operating conditions. Backillumination of a blackened, acoustically matched planar surface with a(More)
  • 1