Learn More
  • H Zer, M Vink, +5 authors I Ohad
  • 1999
Light-dependent activation of thylakoid protein phosphorylation regulates the energy distribution between photosystems I and II of oxygen-evolving photosynthetic eukaryotes as well as the turnover of photosystem II proteins. So far the only known effect of light on the phosphorylation process is the redox-dependent regulation of the membrane-bound protein(More)
Ultrafast dynamics of a reconstituted Lhca4 subunit from the peripheral LHCI-730 antenna of photosystem I of higher plants were probed by femtosecond absorption spectroscopy at 77 K. Intramonomeric energy transfer from chlorophyll (Chl) b to Chl a and energy equilibration between Chl a molecules observed on the subpicosecond time scale are largely similar(More)
The major light-harvesting complex (LHCII) of photosystem II can be reconstituted in its native, trimeric form starting from its apoprotein light-harvesting chlorophyll a/b-binding protein (LHCP), pigments, and thylakoid lipids. In this paper we identify segments in the LHCP polypeptide that are essential for the formation of stable LHCII trimers by(More)
Light-harvesting chlorophyll-a/b-binding protein (LHCP), overexpressed in Escherichia coli, can be reconstituted with pigments to yield complexes that are structurally very similar to light-harvesting complex II (LHCII) isolated from thylakoids [Paulsen, H., Rümler, U. & Rüdiger, W. (1990) Planta 181, 204-211]. In order to analyze which domains of the(More)
In higher plants, the de-epoxidation of violaxanthin (Vx) to antheraxanthin and zeaxanthin is required for the pH-dependent dissipation of excess light energy as heat and by that process plays an important role in the protection against photo-oxidative damage. The de-epoxidation reaction was investigated in an in vitro system using reconstituted(More)
The epithelial mucin MUC1 is an important tumor marker of breast cancer and other carcinomas. Its immunodominant DTR motif, which is the principal target for immunotherapeutic approaches, has been assumed until recently not to be glycosylated in both normal and tumor MUC1 and to acquire its immunogenic conformation by virtue of a certain number of tandem(More)
The major light-harvesting complex (LHCII) of photosystem II, the most abundant chlorophyll-containing complex in higher plants, is organized in trimers. In this paper we show that the trimerization of LHCII occurs spontaneously and is dependent on the presence of lipids. LHCII monomers were reconstituted from the purified apoprotein (LHCP), overexpressed(More)
Variations in the amount of the light-harvesting chlorophyll a/b-binding protein complex (LHCII) is essential for regulation of the uptake of light into photosystem II. An endogenous proteolytic system was found to be involved in the degradation of LHCII in response to elevated light intensities and the proteolysis was shown to be under tight regulation(More)
We have tested various carbohydrate structures and neoglycoproteins (carbohydrate haptens attached to BSA) as inhibitors of the invasion of human red blood cells by Plasmodium falciparum merozoites (strain FCB) in synchronous in vitro cultures, using 3H-hypoxanthine incorporation into intraerythrocytic parasites as analytical tool, and have got the(More)
We present evidence that site-specific O-glycosylation by recombinant polypeptide N-acetylgalactosaminyltransferases rGalNAc-T2 and -T4 is controlled by the primary sequence context, as well as by the position and structure of previously introduced O-glycans. Synthetic mucin-type (glyco)peptides corresponding to sections of the tandem repeat regions of(More)