Learn More
We present a scheme of quantum computation that consists entirely of one-qubit measurements on a particular class of entangled states, the cluster states. The measurements are used to imprint a quantum logic circuit on the state, thereby destroying its entanglement at the same time. Cluster states are thus one-way quantum computers and the measurements form(More)
We give a detailed account of the one-way quantum computer, a scheme of quantum computation that consists entirely of one-qubit measurements on a particular class of entangled states, the cluster states. We prove its universality, describe why its underlying computational model is different from the network model of quantum computation and relate quantum(More)
We propose a model of a learning agent whose interaction with the environment is governed by a simulation-based projection, which allows the agent to project itself into future situations before it takes real action. Projective simulation is based on a random walk through a network of clips, which are elementary patches of episodic memory. The network of(More)
A quantum computer promises efficient processing of certain computational tasks that are intractable with classical computer technology [1]. While basic principles of a quantum computer have been demonstrated in the laboratory [2], scalability of these systems to a large number of qubits [3], essential for practical applications such as the Shor algorithm,(More)
Excess protein ingested by blood meals of mosquitoes is catabolized by a uricotelic pathway. We have established enzyme activity profiles for xanthine dehydrogenase (XDH), the enzyme that catalyzes uric acid synthesis, and related it to intestinal proteolytic activities in female Aedes aegypti mosquitoes. During the first day after eclosion the meconium(More)
Quantum-mechanical entanglement of three or four particles has been achieved experimentally, and has been used to demonstrate the extreme contradiction between quantum mechanics and local realism. However, the realization of five-particle entanglement remains an experimental challenge. The ability to manipulate the entanglement of five or more particles is(More)
A one-way quantum computer (QC C) works by performing a sequence of one-qubit measurements on a particular entangled multi-qubit state, the cluster state. No non-local operations are required in the process of computation. Any quantum logic network can be simulated on the QC C. On the other hand, the network model of quantum computation cannot explain all(More)