Hans J. Briegel

Learn More
We give a detailed account of the one-way quantum computer, a scheme of quantum computation that consists entirely of one-qubit measurements on a particular class of entangled states, the cluster states. We prove its universality, describe why its underlying computational model is different from the network model of quantum computation and relate quantum(More)
We propose a model of a learning agent whose interaction with the environment is governed by a simulation-based projection, which allows the agent to project itself into future situations before it takes real action. Projective simulation is based on a random walk through a network of clips, which are elementary patches of episodic memory. The network of(More)
We demonstrate that entanglement can persistently recur in an oscillating two-spin molecule that is coupled to a hot and noisy environment, in which no static entanglement can survive. The system represents a nonequilibrium quantum system which, driven through the oscillatory motion, is prevented from reaching its (separable) thermal equilibrium state.(More)
We investigate the nonlocal properties of graph states. To this aim, we derive a family of Bell inequalities which require three measurement settings for each party and are maximally violated by graph states. In turn, for each graph state there is an inequality maximally violated only by that state. We show that for certain types of graph states the(More)
In this article, we build a framework allowing for a systematic investigation of the fundamental issue: “Which quantum states serve as universal resources for measurement-based (one-way) quantum computation?” We start our study by re-examining what is exactly meant by “universality” in quantum computation, and what the implications are for universal one-way(More)
Quantum-mechanical entanglement of three or four particles has been achieved experimentally, and has been used to demonstrate the extreme contradiction between quantum mechanics and local realism. However, the realization of five-particle entanglement remains an experimental challenge. The ability to manipulate the entanglement of five or more particles is(More)
We investigate which entanglement resources allow universal measurement-based quantum computation via single-qubit operations. We find that any entanglement feature exhibited by the 2D cluster state must also be present in any other universal resource. We obtain a powerful criterion to assess the universality of graph states by introducing an entanglement(More)
Quantum information processing devices need to be robust and stable against external noise and internal imperfections to ensure correct operation. In a setting of measurement-based quantum computation, we explore how an intelligent agent endowed with a projective simulator can act as controller to adapt measurement directions to an external stray field of(More)