Hans Jørgen Lyngs Jørgensen

Learn More
The production of reactive oxygen species (ROS) by the consumption of molecular oxygen during host–pathogen interactions is termed the oxidative burst. The most important ROS are singlet oxygen (1O2), the hydroxyperoxyl radical (HO2·), the superoxide anion $$\left( {{\text{O}}_{\text{2}} ^ - } \right)$$ , hydrogen peroxide (H2O2), the hydroxyl radical (OH-)(More)
Hydrogen peroxide (H(2)O(2)) is reported to inhibit biotrophic but benefit necrotrophic pathogens. Infection by necrotrophs can result in a massive accumulation of H(2)O(2) in hosts. Little is known of how pathogens with both growth types are affected (hemibiotrophs). The hemibiotroph, Septoria tritici, infecting wheat (Triticum aestivum) is inhibited by(More)
The disease septoria leaf blotch of wheat, caused by fungal pathogen Septoria tritici, is of worldwide concern. The fungus exhibits a hemibiotrophic lifestyle, with a long symptomless, biotrophic phase followed by a sudden transition to necrotrophy associated with host necrosis. Little is known about the systematic interaction between fungal pathogenicity(More)
Fusarium graminearum is a phytopathogenic fungus primarily infecting small grain cereals, including barley and wheat. Secreted enzymes play important roles in the pathogenicity of many fungi. In order to access the secretome of F. graminearum, the fungus was grown in liquid culture with barley or wheat flour as the sole nutrient source to mimic the(More)
Transgenic crops are now grown commercially in 25 countries worldwide. Although pathogens represent major constraints for the growth of many crops, only a tiny proportion of these transgenic crops carry disease resistance traits. Nevertheless, transgenic disease-resistant plants represent approximately 10% of the total number of approved field trials in(More)
The accumulation of the pathogenesis-related (PR) proteins beta-1,3-glucanase and chitinase and structural defence responses were studied in leaves of wheat either resistant or susceptible to the hemibiotrophic pathogen Septoria tritici. Resistance was associated with an early accumulation of beta-1,3-glucanase and chitinase transcripts followed by a(More)
The fungus Septoria tritici causes the disease septoria tritici blotch in wheat, one of the most economically devastating foliar diseases in this crop. To investigate signaling events and defense responses in the wheat-S. tritici interaction, we performed a time-course study of S. tritici infection in resistant and susceptible wheat using quantitative(More)
A proteomic analysis was conducted to map the events during the initial stages of the interaction between the fungal pathogen Fusarium graminearum and the susceptible barley cultivar Scarlett. Quantification of fungal DNA demonstrated a sharp increase in fungal biomass in barley spikelets at 3 days after inoculation. This coincided with the appearance of(More)
The effect of nitrogen on Fusarium Head Blight (FHB) in a susceptible barley cultivar was investigated using gel-based proteomics. Barley grown with either 15 or 100kgha(-1)N fertilizer was inoculated with Fusarium graminearum (Fg). The storage protein fraction did not change significantly in response either to N level or Fg, whereas eighty protein spots in(More)
Application of 3.6 mm silicon (Si+) to the rose (Rosa hybrida) cultivar Smart increased the concentration of antimicrobial phenolic acids and flavonoids in response to infection by rose powdery mildew (Podosphaera pannosa). Simultaneously, the expression of genes coding for key enzymes in the phenylpropanoid pathway (phenylalanine ammonia lyase, cinnamyl(More)