Hans-Jörg Busch

Katrin Fink7
Natascha Bourgeois6
Thomas Helbing3
Meike Schwarz3
7Katrin Fink
6Natascha Bourgeois
3Thomas Helbing
3Meike Schwarz
Learn More
Deep hypothermic circulatory arrest is necessary for some types of cardiac and aortic surgery. Perfusion of the brain can be maintained using a heart-lung machine and unilateral antegrade cerebral perfusion. Cooling rates during extracorporeal circulation depend on local perfusion. A core temperature of 24 degrees C-25 degrees C is aimed at to extend(More)
INTRODUCTION Ischemia and reperfusion after cardiopulmonary resuscitation (CPR) induce endothelial activation and systemic inflammatory response, resulting in post-resuscitation disease. In this study we analyzed direct markers of endothelial injury, circulating endothelial cells (CECs) and endothelial microparticles (EMPs), and endothelial progenitor cells(More)
INTRODUCTION Ischemia/reperfusion after cardiopulmonary resuscitation (CPR) induces systemic inflammatory response and activation of endothelium and coagulation, resulting in a post-cardiac arrest syndrome. We analysed circulating (annexin V+) microparticles and their conjugates in resuscitated patients. METHODS 36 patients after successful resuscitation,(More)
OBJECTIVE The endothelial protein C-receptor (EPCR) is an endothelial transmembrane protein that binds protein C and activated protein C (APC) with equal affinity, thereby facilitating APC formation. APC has anticoagulant, antiapoptotic and antiinflammatory properties. Soluble EPCR, released by the endothelium, may bind activated neutrophils, thereby(More)
BACKGROUND Whole body ischemia-reperfusion injury (IRI) after cardiopulmonary resuscitation (CPR) induces a generalized inflammatory response which contributes to the development of post-cardiac arrest syndrome (PCAS). Recently, pattern recognition receptors (PRRs), such as toll-like receptors (TLRs) and inflammasomes, have been shown to mediate the(More)
INTRODUCTION Microparticles are elevated in patients after successful cardiopulmonary resuscitation (CPR) and may play a role in the development of endothelial dysfunction seen in post-cardiac arrest syndrome (PCAS), a life threatening disease with high mortality. To identify mechanisms of endothelial activation and to develop novel approaches in the(More)
  • 1