Hans G. Folkesson

Learn More
The discovery of mechanisms that regulate salt and water transport by the alveolar and distal airway epithelium of the lung has generated new insights into the regulation of lung fluid balance under both normal and pathological conditions. There is convincing evidence that active sodium and chloride transporters are expressed in the distal lung epithelium(More)
Acid aspiration lung injury may be mediated primarily by neutrophils recruited to the lung by acid-induced cytokines. We hypothesized that a major acid-induced cytokine was IL-8 and that a neutralizing anti-rabbit-IL-8 monoclonal antibody (ARIL8.2) would attenuate acid-induced lung injury in rabbits. Hydrochloric acid (pH = 1.5 in 1/3 normal saline) or 1/3(More)
The alpha v beta 6 integrin was identified in cultured epithelial cells and functions as a fibronectin receptor. We have now used monoclonal antibodies to determine in vivo expression patterns of the beta 6 subunit in normal and pathological human or primate tissues, and during experimental wound healing or induced lung injury. The results indicate that(More)
Exogenous administration of beta-adrenergic agonists has previously been reported to increase lung liquid clearance by stimulation of active sodium transport across the alveolar epithelium. We hypothesized for this study that endogenous release of epinephrine in septic shock would stimulate liquid clearance from the airspaces in rats. Liquid clearance from(More)
Alveolar epithelial type II cells are essential for regenerating an intact alveolar barrier after destruction of type I cells in vivo. The first objective of these experimental studies was to develop an in vitro model to quantify alveolar epithelial cell wound repair. The second objective was to investigate mechanisms of alveolar epithelial cell wound(More)
Transition from placental to pulmonary oxygenation at birth depends on a rapid removal of fetal lung fluid from the developing alveoli. Alveolar fluid clearance was examined in ventilated, anesthetized developing guinea pigs of the ages newborn, 2-d-old, 5-d-old, 30-d-old, and 60-d-old (adult). An isosmolar 5% albumin solution was instilled into the lungs(More)
Reversible airway hyperreactivity underlies the pathophysiology of asthma, yet the precise mediators of the response remain unclear. Human studies have correlated aberrant activation of T helper (Th) 2-like effector systems in the airways with disease. A murine model of airway hyperreactivity in response to acetylcholine was established using mice immunized(More)
Substantial progress has been made in understanding the rate, the pathways, and the mechanisms regulating alveolar protein removal from the uninjured lung. Whole animal studies and cellular studies have demonstrated that the majority of alveolar epithelial protein clearance occurs by passive nondegradative diffusional pathways. Some evidence, however, has(More)
Substantial progress has been made in understanding the role of the distal airway and alveolar epithelial barriers in regulating lung fluid balance. Molecular, cellular, and whole animal studies have demonstrated that reabsorption of fluid from the distal air spaces of the lung is driven by active sodium transport. Several different in vivo, in situ, and(More)
We have studied factors that potentially modulate the expression of mRNA coding for subunits of the amiloride-sensitive sodium channel, alphaENaC and betaENaC, in lungs of vaginally and Caesarean (CS)-delivered late gestation fetal guinea-pigs. Expression of alphaENaC and betaENaC mRNAs was developmentally regulated in the late gestation fetus, reaching(More)