Hans-Erich Dechant

Learn More
Wandering spiders like Cupiennius salei are densely covered by tactile hairs. In darkness Cupiennius uses its front legs as tactile feelers. We selected easily identifiable hairs on the tarsus and metatarsus which are stimulated during this behavior to study tactile hair properties. Both the mechanical and electrophysiological hair properties are largely(More)
Striving towards an in depth understanding of stimulus transformation in arthropod tactile hairs, we studied the mechanical events associated with tactile stimulation. A finite element model was developed taking a tarsal tactile hair of the spider Cupiennius salei as an example. Considering hair diameter, wall thickness, and curvature, the hair is(More)
Stimulus transformation in arthropod mechanoreceptive hairs is dominated by the mechanical properties of both the hair shaft and the hair's articulation. Here a mathematical model of the hair's articulation is developed based on simple relationships relevant for every anisotropic articulation. The mechanical behavior regarding deflection under load of a(More)
  • 1