Learn More
CDK8 (cyclin-dependent kinase 8), along with CycC, Med12, and Med13, form a repressive module (the Cdk8 module) that prevents RNA polymerase II (pol II) interactions with Mediator. Here, we report that the ability of the Cdk8 module to prevent pol II interactions is independent of the Cdk8-dependent kinase activity. We use electron microscopy and(More)
The protein density and arrangement of subunits of a complete, 32-protein, RNA polymerase II (pol II) transcription pre-initiation complex (PIC) were determined by means of cryogenic electron microscopy and a combination of chemical cross-linking and mass spectrometry. The PIC showed a marked division in two parts, one containing all the general(More)
The mitochondrial protein frataxin plays a central role in mitochondrial iron homeostasis, and frataxin deficiency is responsible for Friedreich ataxia, a neurodegenerative and cardiac disease that affects 1 in 40000 children. Here we present a single-particle reconstruction from cryoelectron microscopic images of iron-loaded 24-subunit oligomeric frataxin(More)
The open source software suite SIMPLE: Single-particle IMage Processing Linux Engine provides data analysis methods for single-particle cryo-electron microscopy (cryo-EM). SIMPLE addresses the problem of obtaining 3D reconstructions from 2D projections only, without using an input reference volume for approximating orientations. The SIMPLE reconstruction(More)
The general transcription factor IID (TFIID) is required for initiation of RNA polymerase II-dependent transcription at many eukaryotic promoters. TFIID comprises the TATA-binding protein (TBP) and several conserved TBP-associated factors (TAFs). Recognition of the core promoter by TFIID assists assembly of the preinitiation complex. Using cryo-electron(More)
Low-dose electron microscopy of cryo-preserved individual biomolecules (single-particle cryo-EM) is a powerful tool for obtaining information about the structure and dynamics of large macromolecular assemblies. Acquiring images with low dose reduces radiation damage, preserves atomic structural details, but results in low signal-to-noise ratio of the(More)
Three-dimensional (3D) reconstructions of the two 8.4 MDa Rapana thomasiana hemocyanin isoforms, RtH1 and RtH2, have been obtained by cryoelectron microscopy of molecules embedded in vitreous ice and single particle image processing. The final 3D structures of the RtH1 and RtH2 didecamers at 19 A and 16 A resolution, respectively, are very similar to(More)
Mg-chelatase catalyzes the first committed step of the chlorophyll biosynthetic pathway, the ATP-dependent insertion of Mg(2+) into protoporphyrin IX (PPIX). Here we report the reconstruction using single-particle cryo-electron microscopy of the complex between subunits BchD and BchI of Rhodobacter capsulatus Mg-chelatase in the presence of ADP, the(More)
Thioredoxin and thioredoxin reductase can regulate cell metabolism through redox regulation of disulfide bridges or through removal of H(2)O(2). These two enzymatic functions are combined in NADPH-dependent thioredoxin reductase C (NTRC), which contains an N-terminal thioredoxin reductase domain fused with a C-terminal thioredoxin domain. Rice NTRC exists(More)
Photosynthetic organisms require chlorophyll and bacteriochlorophyll to harness light energy and to transform water and carbon dioxide into carbohydrates and oxygen. The biosynthesis of these pigments is initiated by magnesium chelatase, an enzyme composed of BchI, BchD, and BchH proteins, which catalyzes the insertion of Mg(2+) into protoporphyrin IX(More)