Learn More
Light generates reducing equivalents in chloroplasts that are used not only for carbon reduction, but also for the regulation of the activity of chloroplast enzymes by reduction of regulatory disulfides via the ferredoxin:thioredoxin reductase (FTR) system. FTR, the key electron/thiol transducer enzyme in this pathway, is unique in that it can reduce(More)
Binding of oxygen to iron is exploited in several biological and chemical processes. Although computational and spectroscopic results have suggested side-on binding, only end-on binding of oxygen to iron has been observed in crystal structures. We have determined structures of naphthalene dioxygenase that show a molecular oxygen species bound to the(More)
The enzyme ribonucleotide reductase furnishes precursors for the DNA synthesis of all living cells. One of its constituents, the free radical protein, has an unusual alpha-helical structure. There are two iron centres that are about 25 A apart in the dimeric molecule. Tyrosine 122, which harbours the stable free radical necessary for the activity of(More)
As the first International Tables volume devoted to the crystallography of large biological molecules, Volume F is intended to complement existing volumes of International Tables for Crystallography. A background history of the subject is followed by a concise introduction to the basic theory of X-ray diffraction and other requirements for the practice of(More)
Oxygen-evolving photosynthetic organisms regulate carbon metabolism through a light-dependent redox signalling pathway. Electrons are shuttled from photosystem I by means of ferredoxin (Fdx) to ferredoxin-thioredoxin reductase (FTR), which catalyses the two-electron-reduction of chloroplast thioredoxins (Trxs). These modify target enzyme activities by(More)
Bacterial Rieske non-heme iron oxygenases catalyze the initial hydroxylation of aromatic hydrocarbon substrates. The structures of all three components of one such system, the toluene 2,3-dioxygenase system, have now been determined. This system consists of a reductase, a ferredoxin and a terminal dioxygenase. The dioxygenase, which was cocrystallized with(More)
The principal driving forces of protein folding are the burial of hydrophobic residues in the interior of proteins and the exposure of charged residues at the surface. Charged residues are only occasionally found in the interior, where they form hydrogen bonds to oppositely charged residues or main-chain atoms. Ribonucleotide reductase, a key enzyme in DNA(More)
Inosine monophosphate dehydrogenase (IMPDH) and guanosine monophosphate reductase (GMPR) belong to the same structural family, share a common set of catalytic residues and bind the same ligands. The structural and mechanistic features that determine reaction outcome in the IMPDH and GMPR family have not been identified. Here we show that the GMPR reaction(More)
The large subunit of ribonucleotide reductase (RNR) contains a ten-stranded beta/alpha barrel of a new type consisting of two antiparallel halves. The two halves of the barrel are pseudo 2-fold-related, have similar folds but different additional intervening secondary structure elements and loops. The inner diameter of the RNR barrel, 15 A to 20 A, is(More)