Hans-Dieter Meyer

Learn More
The infrared absorption spectrum of the protonated water dimer (H5O2+) is simulated in full dimensionality (15 dimensional) in the spectral range of 0-4000 cm(-1). The calculations are performed using the multiconfiguration time-dependent Hartree (MCTDH) method for propagation of wavepackets. All the fundamentals and several overtones of the vibrational(More)
The infrared spectra of H(H(2)O)(2)(+), D(D(2)O)(2)(+), H(D(2)O)(2)(+), and D(H(2)O)(2)(+) isotopologues of the Zundel cation in the spectral range of 0-4000 cm(-1) are computed by quantum dynamics in full dimensionality using the multiconfiguration time-dependent Hartree method. The spectra present dramatic isotope effects in the middle spectral region(More)
The dynamics of a proton between two water molecules is studied by full-dimensional (15 dimensional) quantum dynamics using the multiconfigurational time-dependent Hartree (MCTDH) method. The collision of H(3)O(+) and H(2)O fragments is followed by an ultrafast and nearly irreversible energy transfer from the degrees of freedom that define the hydrogen bond(More)
Quantum-dynamical full-dimensional (15D) calculations are reported for the protonated water dimer (H5O2+) using the multiconfiguration time-dependent Hartree (MCTDH) method. The dynamics is described by curvilinear coordinates. The expression of the kinetic energy operator in this set of coordinates is given and its derivation, following the polyspherical(More)
Dissociation of methane on metal surfaces is of high practical and fundamental interest. Therefore there is currently a big push aimed at determining the simplest dynamical model that allows the reaction dynamics to be described with quantitative accuracy using quantum dynamics. Using five-dimensional quantum dynamical and full-dimensional ab initio(More)
We investigate few-boson tunneling in a one-dimensional double well, covering the full crossover from weak interactions to the fermionization limit of strong correlations. Based on exact quantum-dynamical calculations, it is found that the tunneling dynamics of two atoms evolves from Rabi oscillations to correlated pair tunneling as we increase the(More)
We revisit the validity of making a direct comparison between measured absorption maxima and computed vertical transition energies within 0.1 eV to calibrate an excited-state level of theory. This is illustrated on the UV absorption spectrum of ethylene for which the usual experimental values of 7.66 eV (V←N) and 7.11 eV (R(3s)←N) cannot be compared(More)
The absorption cross sections of 18 isotopologues of the ozone molecule have been calculated in the range of the Hartley-Huggins bands (27000-55000 cm(-1)). All 18 possible ozone isotopologues made with (16)O, (17)O, and (18)O have been considered, with emphasis on those of geophysics interest like (16)O(3) (17)O(16)O(2), (16)O(17)O(16)O, (18)O(16)O(2), and(More)
We report energies and tunneling splittings of vibrational excited states of malonaldehyde which have been obtained using full dimensional quantum mechanical calculations. To this end we employed the multi configuration time-dependent Hartree method. The results have been obtained using a recently published potential energy surface [Y. Wang, B. J. Braams,(More)
We present new calculations of the branching ratios between the various electronic and isotopic photodissociation channels of ozone. Special emphasis is placed on the isotopic/isotopologue differences because the contribution of the ozone photodissociation to the oxygen isotope and ozone isotopologue enrichments or fractionations is important for(More)