Hans-Dieter Meyer

Learn More
The infrared absorption spectrum of the protonated water dimer (H5O2+) is simulated in full dimensionality (15 dimensional) in the spectral range of 0-4000 cm(-1). The calculations are performed using the multiconfiguration time-dependent Hartree (MCTDH) method for propagation of wavepackets. All the fundamentals and several overtones of the vibrational(More)
We present the results of a full-dimensional quantum mechanical study of the rovibrational energy transfer in the collision between ortho-H2 and para-H2 in the energy range of 0.1-1.0 eV. The multiconfiguration time-dependent Hartree algorithm has been used to propagate the wave packets on the global potential energy surface by Boothroyd et al. [J. Chem.(More)
[** ] The authors thank Prof. J. Bowman for providing the potential-energy routine, D. Lauvergnat for performing the TNUM calculations and the Scientific Supercomputing Center Karlsruhe for generously providing computer time. O. V. is grateful to the Alexander von Hum-boldt Foundation for financial support. Accurate infrared (IR) spectroscopy of protonated(More)
For computational rovibrational spectroscopy the choice of the frame is critical for an approximate separation of overall rotation from internal motions. To minimize the coupling between internal coordinates and rotation, Eckart proposed a condition ["Some studies concerning rotating axes and polyatomic molecules," Phys. Rev. 47, 552-558 (1935)] and a frame(More)
The infrared spectra of H(H(2)O)(2)(+), D(D(2)O)(2)(+), H(D(2)O)(2)(+), and D(H(2)O)(2)(+) isotopologues of the Zundel cation in the spectral range of 0-4000 cm(-1) are computed by quantum dynamics in full dimensionality using the multiconfiguration time-dependent Hartree method. The spectra present dramatic isotope effects in the middle spectral region(More)
Full (6D) and reduced (4D and 2D) dimensional multiconfiguration time-dependent Hartree (MCTDH) calculations for the vibrational fundamentals and overtones of the CO/Cu(100) system are carried out using the recently reported [R. Marquardt, F. Cuvelier, R. A. Olsen, E. J. Baerends, J. C. Tremblay, and P. Saalfrank, J. Chem. Phys. 132, 074108 (2010)] SAP(More)
The dynamics of a proton between two water molecules is studied by full-dimensional (15 dimensional) quantum dynamics using the multiconfigurational time-dependent Hartree (MCTDH) method. The collision of H(3)O(+) and H(2)O fragments is followed by an ultrafast and nearly irreversible energy transfer from the degrees of freedom that define the hydrogen bond(More)
Dissociation of methane on metal surfaces is of high practical and fundamental interest. Therefore there is currently a big push aimed at determining the simplest dynamical model that allows the reaction dynamics to be described with quantitative accuracy using quantum dynamics. Using five-dimensional quantum dynamical and full-dimensional ab initio(More)
We investigate few-boson tunneling in a one-dimensional double well, covering the full crossover from weak interactions to the fermionization limit of strong correlations. Based on exact quantum-dynamical calculations, it is found that the tunneling dynamics of two atoms evolves from Rabi oscillations to correlated pair tunneling as we increase the(More)
We revisit the validity of making a direct comparison between measured absorption maxima and computed vertical transition energies within 0.1 eV to calibrate an excited-state level of theory. This is illustrated on the UV absorption spectrum of ethylene for which the usual experimental values of 7.66 eV (V←N) and 7.11 eV (R(3s)←N) cannot be compared(More)