Hans-Christian Ehrlich

Learn More
MOTIVATION The landscape of structural variation (SV) including complex duplication and translocation patterns is far from resolved. SV detection tools usually exhibit low agreement, are often geared toward certain types or size ranges of variation and struggle to correctly classify the type and exact size of SVs. RESULTS We present Gustaf (Generic(More)
In life sciences, scientists are confronted with an exponential growth of biological data, especially in the genomics and proteomics area. The efficient management and use of these data, and its transformation into knowledge are basic requirements for biological research. Therefore, integration of diverse applications and data from geographically(More)
High-resolution mass spectrometry (MS) has become an important tool in the life sciences, contributing to the diagnosis and understanding of human diseases, elucidating biomolecular structural information and characterizing cellular signaling networks. However, the rapid growth in the volume and complexity of MS data makes transparent, accurate and(More)
The intuitive way of chemists to communicate molecules is via two-dimensional structure diagrams. The straightforward visual representations are mostly preferred to the often complicated systematic chemical names. For chemical patterns, however, no comparable visualization standards have evolved so far. Chemical patterns denoting descriptions of chemical(More)
We describe ProteomeTools, a project building molecular and digital tools from the human proteome to facilitate biomedical research. Here we report the generation and multimodal liquid chromatography-tandem mass spectrometry analysis of >330,000 synthetic tryptic peptides representing essentially all canonical human gene products, and we exemplify the(More)
UNLABELLED BACKGROUND Searching for substructures in molecules belongs to the most elementary tasks in cheminformatics and is nowadays part of virtually every cheminformatics software. The underlying algorithms, used over several decades, are designed for the application to general graphs. Applied on molecular graphs, little effort has been spend on(More)
Crystal structure databases offer ample opportunities to derive small molecule conformation preferences, but the derived knowledge is not systematically applied in drug discovery research. We address this gap by a comprehensive and extendable expert system enabling quick assessment of the probability of a given conformation to occur. It is based on a(More)
Chemical patterns are essential for various fields of chemical, chemoinformatic and pharmaceutical applications. So far, representations of chemical patterns are limited to linear molecular pattern languages like SMARTS [1]. As these languages are designed for computational efficiency, they are often hardly human readable. In order to improve the usability(More)
Retrieving molecules with specific structural features is a fundamental requirement of today's molecular database technologies. Estimates claim the chemical space relevant for drug discovery to be around 10⁶⁰ molecules. This figure is many orders of magnitude larger than the amount of molecules conventional databases retain today and will store in the(More)