Learn More
We introduce the notion of the burden of a partial type in a complete first-order theory and call a theory strong if all types have almost finite burden. In a simple theory it is the supremum of the weights of all extensions of the type, and a simple theory is strong if and only if all types have finite weight. A theory without the independence property is(More)
We introduce the notion of a preindependence relation between subsets of the big model of a complete first-order theory, an abstraction of the properties which numerous concrete notions such as forking, dividing, thorn-forking, thorn-dividing, splitting or finite satisfiability share in all complete theories. We examine the relation between four additional(More)
BACKGROUND In the Swedish society, as in many other societies, many children and adolescents with mental health problems do not receive the help they need. As the Swedish society becomes increasingly multicultural, and as ethnic and economic residential segregation become more pronounced, this study utilises ethnicity and neighbourhood context to examine(More)
We prove two results about generically stable types p in arbitrary theories. The first, on existence of strong germs, generalizes results from [3] on stably dominated types. The second is an equivalence of forking and dividing, assuming generic stability of p (m) for all m. We use the latter result to answer in full generality a question posed by Hasson and(More)
A class of graphs is nowhere dense if for every integer r there is a finite upper bound on the size of cliques that occur as (topological) r-minors. We observe that this tameness notion from algorithmic graph theory is essentially the earlier stability theoretic notion of superflatness. For subgraph-closed classes of graphs we prove equivalence to stability(More)