Learn More
Interferons (IFNs) induce gene expression by phosphorylating latent transcription factors belonging to the signal transducer and activator of transcription (STAT) family, mediated by janus kinases (Jaks). STAT dimers directly activate genes containing the IFNgamma activation site (GAS) DNA element, with different STAT proteins displaying slightly different(More)
Daudi B lymphoblastoid cells are highly sensitive to the anti-growth and anti-viral effects of interferon (IFN). Unlike many cell lines, these cells show prolonged transcription of IFN-stimulated genes following treatment with IFN-alpha. This prolonged response correlated with the continued presence of the activated transcription factor, IFN-stimulated gene(More)
The receptor-like protein tyrosine phosphatase mu (RPTPmu) belongs to the subfamily of meprin, A5, RPTPmu (MAM) domain-containing RPTPs, which are thought to play an important role in cell-cell adhesion mediated processes. The current study was designed to examine the expression pattern of RPTPmu in mice. We have generated RPTPmu-LacZ knock-in mice that(More)
Transcriptional responses to interferon (IFN) are mediated by tyrosine phosphorylation and nuclear translocation of transcription factors of the signal transducer and activator of transcription (Stat) family. The Stat1 protein is required for all transcriptional responses to IFN (both type I and type II). Responses to type I IFN (alpha and beta) also(More)
In the canonical pathway of IFN-I-mediated signaling, phosphorylation of STAT1 and STAT2 leads to heterodimerization and interaction with IRF9. This complex, also known as IFN-stimulated gene factor 3 (ISGF3), then translocates into the nucleus and binds the IFN-I-stimulated response element (ISRE) leading to the activation of transcription of over 300(More)
Majority of clear cell renal cell carcinomas (ccRCCs) are diagnosed in the advanced metastatic stage resulting in dramatic decrease of patient survival. Thereby, early detection and monitoring of the disease may improve prognosis and treatment results. Recent technological advances enable the identification of genetic events associated with ccRCC and reveal(More)
IL-6 has pro- and anti-inflammatory effects and is involved in endothelial cell (EC) dysfunction. The anti-inflammatory effects of IL-6 are mediated by signal transducer and activator of transcription-3 (STAT3), which is importantly controlled by suppressor of cytokine signaling 3 (SOCS3). Therefore, cytokines that modulate SOCS3 expression might inhibit(More)
Nitric oxide (NO) depletion in rats induces severe endothelial dysfunction within 4 days. Subsequently, hypertension and renal injury develop, which are ameliorated by alpha-tocopherol (VitE) cotreatment. The hypothesis of the present study was that NO synthase (NOS) inhibition induces a renal cortical antioxidative transcriptional response and invokes(More)
Shear stress modulates gene expression in endothelial cells (ECs) partly through nitric oxide (NO), acting via enhanced cGMP formation by guanylyl cyclase (GC). We addressed non-cGMP-mediated transcriptional responses to shear stress in human umbilical ECs subjected to high-laminar shear stress (25 dyn/cm2; 150 minutes). RNA was isolated,(More)
The prevalence of cardiovascular disease in patients with renal failure is extremely high and accounts for a large part of the morbidity and mortality. Inflammation participates importantly in host defense against infectious agents and injury, but also contributes to the pathophysiology of many diseases, including cardiovascular atherosclerosis, which is a(More)