Hanqiang Cheng

Learn More
Online video chat services such as Chatroulette, Omegle, and vChatter that randomly match pairs of users in video chat sessions are fast becoming very popular, with over a million users per month in the case of Chatroulette. A key problem encountered in such systems is the presence of flashers and obscene content. This problem is especially acute given the(More)
Online video chat services, such as Chatroulette, Omegle, and vChatter are becoming increasingly popular and have attracted millions of users. One critical problem encountered in such applications is the presence of misbehaving users ("flashers") and obscene content. Automatically filtering out obscene content from these systems in an <i>efficient</i>(More)
The need for highly scalable and accurate detection and filtering of misbehaving users and obscene content in online video chat services has grown as the popularity of these services has exploded in popularity. This is a challenging problem because processing large amounts of video is compute intensive, decisions about whether a user is misbehaving or not(More)
Online video chat services such as Chatroulette, Omegle, and vChatter that randomly match pairs of users in video chat sessions are quickly becoming very popular, with over a million users per month in the case of Chatroulette. A key problem encountered in such systems is the presence of flashers and obscene content. This problem is especially acute given(More)
Online video chat services such as Chatroulette [1] and Omegle [2] that randomly match pairs of users in video chat sessions have become increasingly popular, with over twenty thousand online users at anytime during a day. A key problem encountered in such systems is the presence of misbehaving users ("flashers") and obscene content. Our previous works [3](More)
  • 1