Hannu Tiitinen

Learn More
Life or death in hostile environments depends crucially on one's ability to detect and gate novel sounds to awareness, such as that of a twig cracking under the paw of a stalking predator in a noisy jungle. Two distinct auditory cortex processes have been thought to underlie this phenomenon: (i) attenuation of the so-called N1 response with repeated(More)
Studies of human auditory and somatosensory modalities have shown that there is an oscillatory response in the gamma-band (at about 40 Hz) frequency which is elicited by either steady state or transient stimulation. The auditory 40-Hz response is generated at least partially in the auditory cortex as a result of thalamocortical interaction and may serve(More)
The current review constitutes the first comprehensive look at the possibility that the mismatch negativity (MMN, the deflection of the auditory ERP/ERF elicited by stimulus change) might be generated by so-called fresh-afferent neuronal activity. This possibility has been repeatedly ruled out for the past 30 years, with the prevailing theoretical accounts(More)
Being able to detect unusual, possibly dangerous events in the environment is a fundamental ability that helps ensure the survival of biological organisms. Novelty detection requires a memory system that models (builds neural representations of) events in the environment, so that changes are detected because they violate the predictions of the model. The(More)
Brain responses to the same spoken syllable completing a Finnish word or a pseudo-word were studied. Native Finnish-speaking subjects were instructed to ignore the sound stimuli and watch a silent movie while the mismatch negativity (MMN), an automatic index of experience-dependent auditory memory traces, was recorded. The MMN to each syllable was larger(More)
Learning to speak a new language requires the formation of recognition patterns for the speech sounds specific to the newly acquired language. The present study demonstrates the dynamic nature of cortical memory representations for phonemes in adults by using the mismatch negativity (MMN) event-related potential. We studied Hungarian and Finnish subjects,(More)
OBJECTIVE In response to the rapidly increasing interest in using human voice in cognitive brain research, a new method, semisynthetic speech generation (SSG), is presented for generation of speech stimuli. METHODS The method synthesizes speech stimuli as a combination of purely artificial processes and processes that originate from the natural human(More)
Here, the perception of auditory spatial information as indexed by behavioral measures is linked to brain dynamics as reflected by the N1m response recorded with whole-head magnetoencephalography (MEG). Broadband noise stimuli with realistic spatial cues corresponding to eight direction angles in the horizontal plane were constructed via custom-made,(More)
We offer a model of how human cortex detects changes in the auditory environment. Auditory change detection has recently been the object of intense investigation via the mismatch negativity (MMN). MMN is a preattentive response to sudden changes in stimulation, measured noninvasively in the electroencephalogram (EEG) and the magnetoencephalogram (MEG). It(More)
The mismatch negativity (MMN) component of the auditory event-related potential (ERP) is elicited by infrequent, physically deviant stimuli in a sequence of frequent homogeneous stimuli (standards). It has been suggested that the MMN is generated by an automatic (attention-independent) neural mismatch process with a memory trace that encodes the physical(More)