Learn More
GABAA-receptors display an extensive structural heterogeneity based on the differential assembly of a family of at least 15 subunits (alpha 1-6, beta 1-3, gamma 1-3, delta, rho 1-2) into distinct heteromeric receptor complexes. The subunit composition of receptor subtypes is expected to determine their physiological properties and pharmacological profiles,(More)
Molecular Neurobiology Unit (E.A.B.), Royal Free Hospital School of Medicine, London, England; Neuroscience Discovery (P.S.), Lilly Research Laboratories, Indianapolis, Indiana; Department of Pharmacology (R.W.O.), U.C.L.A. School of Medicine, Los Angeles, California; Institute of Pharmacology (H.M.), ETH and University of Zurich, Zurich, Switzerland;(More)
Changes in the expression of the NMDA receptor subunits (NRs) NR2A, 2B, and 2C were investigated in histo blots of the developing rat brain with subunit-specific antisera. At birth, the NR2B subunit was detected almost ubiquitously, the NR2A subunit staining was faint and restricted to the hippocampus, cerebral cortex, and striatum, and no NR2C subunit(More)
The involvement of GABA in neuronal differentiation and maturation precedes its role as inhibitory neurotransmitter in the brain. It was therefore investigated whether GABAA receptors mediating the actions of GABA in neonatal and adult brain can be distinguished by their molecular structure and cellular location. Immunohistochemistry with subunit-specific(More)
Patients with panic disorders show a deficit of GABAA receptors in the hippocampus, parahippocampus and orbitofrontal cortex. Synaptic clustering of GABAA receptors in mice heterozygous for the γ2 subunit was reduced, mainly in hippocampus and cerebral cortex. The γ2+/– mice showed enhanced behavioral inhibition toward natural aversive stimuli and(More)
The gamma2 subunit of GABA(A) receptor chloride channels is required for normal channel function and for postsynaptic clustering of these receptors during synaptogenesis. In addition, GABA(A) receptor function is thought to contribute to normal postnatal maturation of neurons. Loss of postsynaptic GABA(A) receptors in gamma2-deficient neurons might(More)
GABAB (gamma-aminobutyric acid)-receptors have been implicated in central nervous system (CNS) functions, e.g. cognition and pain perception, and dysfunctions including spasticity and absence epilepsy. To permit an analysis of the two known GABAB-receptor splice variants GABAB-R1a (GB1a) and GABAB-R1b (GB1b), their distribution pattern has been(More)
To assess the significance of GABAA-receptor heterogeneity, which is based on a family of at least 15 subunits, the cellular localization and subunit composition of GABAA-receptor subtypes were analyzed immunohistochemically in the rat spinal cord. The distribution of subunits alpha 1, alpha 2, alpha 3, alpha 5, beta 2,3, and gamma 2 was investigated with(More)
GABAA-receptors in the brain display a striking structural heterogeneity, which is based on a multiplicity of diverse subunits. The allocation of GABAA-receptor subtypes to identified neurons is essential for an analysis of the functional significance of receptor heterogeneity. Among GABA-receptive neurons, well-characterized examples include the(More)
The subunit architecture of gamma-aminobutyric acid, type B (GABA(B)), receptors in situ is largely unknown. The GABA(B) receptor variants, characterized by the constituents GBR1a and GBR1b, were therefore analyzed with regard to their subunit composition as well as their regional and subcellular distribution in situ. The analysis was based on the use of(More)