Learn More
We give a detailed analysis of a general realization of reflection terahertz time-domain spectroscopy. The method is self-referenced and applicable at all incidence angles and for all polarizations of the incident terahertz radiation. Hence it is a general method for the determination of the dielectric properties of especially liquids in environments where(More)
Experimental investigations of the microscopic electric and in particular the magnetic near-fields in metamaterials remain highly challenging and current studies rely mostly on numerical simulations. Here we report a terahertz near-field imaging approach which provides spatially resolved measurements of the amplitude, phase and polarization of the electric(More)
The THz response of slit structures and split-ring resonators (SRRs) featuring extremely small gaps on the micro- or nanoscale is investigated numerically. Both structures exhibit strong field enhancement in the gap region due to light-induced current flows and capacitive charging across the gap. Whereas nanoslits allow for broadband enhancement the(More)
Using terahertz near-field imaging we experimentally investigate the resonant electromagnetic field distributions behind a split-ring resonator and its complementary structure with sub-wavelength spatial resolution. For the out-of-plane components we experimentally verify complementarity of electric and magnetic fields as predicted by Babinet's principle.(More)
We show that a resonant response with very high quality factors can be achieved in periodic metamaterials by radiatively coupling their structural elements. The coupling is mediated by lattice modes and can be efficiently controlled by tuning the lattice periodicity. Using a recently developed terahertz (THz) near-field imaging technique and conventional(More)
We present an experimental and theoretical study of plasmonic modes in high aspect ratio nanostructures in the visible wavelength region and demonstrate their high performance for sensing applications. Ordered and well-defined plasmonic structures with various cross-sectional profiles and heights are obtained using a top-down fabrication process. We show(More)
Slits in thin metal sheets and split-ring resonators (SRR) featuring gaps on the micro- or nano-scale are shown to be a promising tool for THz switching or THz nonlinear spectroscopy applications. Both structures show strong field enhancement in the gap region due to light-induced current flows and capacitive charging across the gap. Whereas nano-slits(More)
We propose a novel terahertz material analysis approach that provides highly accurate material parameters and can be used for industrial quality control. The method treats the inspected material within its environment locally as a stratified system and describes the light-matter interaction of each layer in a realistic way. The approach is illustrated in(More)
PURPOSE How much can the radiation dose be reduced for hand radiography by using digital luminescence radiography (DLR)? METHODS AND MATERIALS A hand phantom (3M) with a cyst, two fractures and an "amputation" was digitally exposed in an anterior-posterior orientation using DLR (ADC-70, Agfa). The tube current time product (mAs) was reduced gradually(More)
We present near-field measurements of an induced transparency behavior using a double split-ring resonator geometry. Mapping the out-of-plane electric field component directly reveals that the induced transparency is linked to an asymmetric mode profile with the subunits oscillating in antiphase. The measurements are compared to complementary numerical(More)