#### Filter Results:

#### Publication Year

2001

2008

#### Publication Type

#### Co-author

#### Key Phrase

#### Publication Venue

Learn More

(MATH) Let $\overlinecr(<i>G</i>)$ denote the rectilinear crossing number of a graph <i>$G</i>. We determine $\overlinecr(<i>K</i> <inf>11</inf>)=102 and $\overlinecr(<i>K</i> <inf>12</inf>)=153. Despite the remarkable hunt for crossing numbers of the complete graph <i>.K</i> <inf>n</inf> -- initiated by R. Guy in the 1960s -- these quantities have been… (More)

The farthest line segment Voronoi diagram shows properties different from both the closest-segment Voronoi diagram and the farthest-point Voronoi diagram. Surprisingly, this structure did not receive attention in the computational geometry literature. We analyze its combinatorial and topological properties and outline an O(n log n) time construction… (More)

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to… (More)

We extend the order type data base of all realizable order types in the plane to point sets of cardinality 11. More precisely, we provide a complete data base of all combinatorial different sets of up to 11 points in general position in the plane. In addition, we develop a novel and efficient method for a complete extension to order types of size 12 and… (More)

The number of minimum pseudo-triangulations is minimized for point sets in convex position.

We investigate the number of plane geometric, i.e., straight-line, graphs, a set <i>S</i> of <i>n</i> points in the plane admits. We show that the number of plane graphs and connected plane graphs as well as the number of cycle-free plane graphs is minimized when <i>S</i> is in convex position. Moreover, these results hold for all these graphs with an… (More)

Problem 50 in the Open Problems Project of the computational geometry community asks whether any triangulation on a point set in the plane contains a pointed spanning tree as a subgraph. We provide a counterexample. As a consequence we show that there exist triangulations which require a linear number of edge flips to become Hamiltonian.