Hannah K. Wilder

Learn More
BACKGROUND With the global distribution, morbidity, and mortality associated with tick and louse-borne relapsing fever spirochetes, it is important to understand the dynamics of vector colonization by the bacteria and transmission to the host. Tick-borne relapsing fever spirochetes are blood-borne pathogens transmitted through the saliva of soft ticks, yet(More)
BACKGROUND Relapsing fever spirochetes are global yet neglected pathogens causing recurrent febrile episodes, chills, nausea, vomiting, and pregnancy complications. Given these nonspecific clinical manifestations, improving diagnostic assays for relapsing fever spirochetes will allow for identification of endemic foci and expedite proper treatment.(More)
BACKGROUND Borrelia turicatae, an agent of tick-borne relapsing fever, is an example of a pathogen that can adapt to disparate conditions found when colonizing the mammalian host and arthropod vector. However, little is known about the genetic factors necessary during the tick-mammalian infectious cycle, therefore we developed a genetic system to transform(More)
In June 2013, a Caucasian male from Kerr county, Texas, with an extensive history of outdoor activity working with sheep, goats, and exotic game became ill, displaying fever, chills, uveitis, headache, retrobulbar pain, severe malaise, and weakness. Myalgia was centered on upper extremities , most notably the shoulders, arms, and hands, and by July 2013 the(More)
BACKGROUND Ornithodoros turicata is a veterinary and medically important argasid tick that is recognized as a vector of the relapsing fever spirochete Borrelia turicatae and African swine fever virus. Historic collections of O. turicata have been recorded from Latin America to the southern United States. However, the geographic distribution of this vector(More)
Adaptation is key for survival as vector-borne pathogens transmit between the arthropod and vertebrate, and temperature change is an environmental signal inducing alterations in gene expression of tick-borne spirochetes. While plasmids are often associated with adaptation, complex genomes of relapsing fever spirochetes have hindered progress in(More)
  • 1