Learn More
Primary ciliary dyskinesia most often arises from loss of the dynein motors that power ciliary beating. Here we show that DNAAF3 (also known as PF22), a previously uncharacterized protein, is essential for the preassembly of dyneins into complexes before their transport into cilia. We identified loss-of-function mutations in the human DNAAF3 gene in(More)
The genetic disorder primary ciliary dyskinesia (PCD) arises from dysmotility of cilia in the respiratory tract, brain ventricles, oviduct and the embryonic node. Patients have chronic obstructive pulmonary disease, reduced fertility and situs abnormalities. PCD is genetically heterogeneous with 12 genes causing ~40% of all cases, two encoding proteins(More)
  • 1