Learn More
Mitochondria play a critical role in mediating both apoptotic and necrotic cell death. The mitochondrial permeability transition (mPT) leads to mitochondrial swelling, outer membrane rupture and the release of apoptotic mediators. The mPT pore is thought to consist of the adenine nucleotide translocator, a voltage-dependent anion channel, and cyclophilin D(More)
BACKGROUND The consequence of upregulation of desmin in the heart is unknown. Mutations in desmin have been linked to desmin-related myopathy (DRM), which is characterized by abnormal intrasarcoplasmic accumulation of desmin, but direct causative evidence that a desmin mutation leads to aberrant intrasarcoplasmic desmin accumulation, aggregation, and(More)
Thrombospondin (Thbs) proteins are induced in sites of tissue damage or active remodeling. The endoplasmic reticulum (ER) stress response is also prominently induced with disease where it regulates protein production and resolution of misfolded proteins. Here we describe a function for Thbs as ER-resident effectors of an adaptive ER stress response. Thbs4(More)
A critical event in ischemia-based cell death is the opening of the mitochondrial permeability transition pore (MPTP). However, the molecular identity of the components of the MPTP remains unknown. Here, we determined that the Bcl-2 family members Bax and Bak, which are central regulators of apoptotic cell death, are also required for mitochondrial(More)
To delineate the in vivo cardiac functions requiring normal delta protein kinase C (PKC) activity, we pursued loss-of-function through transgenic expression of a deltaPKC-specific translocation inhibitor protein fragment, deltaV1, in mouse hearts. Initial results using the mouse alpha-myosin heavy chain (alphaMHC) promoter resulted in a lethal heart failure(More)
Calcineurin is a protein phosphatase that is uniquely regulated by sustained increases in intracellular Ca(2+) following signal transduction events. Calcineurin controls cellular proliferation, differentiation, apoptosis, and inducible gene expression following stress and neuroendocrine stimulation. In the adult heart, calcineurin regulates hypertrophic(More)
Myosin binding protein C (MyBP-C) is an integral part of the striated muscle sarcomere. As is the case for other sarcomeric genes in human populations, multiple mutations within the gene have been linked to familial hypertrophic cardiomyopathy. Although some MyBP-C lesions are the result of missense mutations, most show truncated polypeptides lacking either(More)
Multiple mutations in cardiac troponin I (cTnI) have been associated with familial hypertrophic cardiomyopathy. Two mutations are located in the cTnI inhibitory domain, a highly negatively charged region that alternately binds to either actin or troponin C, depending on the intracellular concentration of calcium. This region is critical to the inhibition of(More)
BACKGROUND Transgenic and gene-targeted models have focused on the mouse. Fundamental differences between the mouse and human exist in Ca2+ handling during contraction/relaxation and in alterations in Ca2+ flux during heart failure, with the rabbit more accurately reflecting the human system. METHODS AND RESULTS Cardiac troponin I (cTnI) mutations can(More)
Mutations in cardiac motor protein genes are associated with familial hypertrophic cardiomyopathy. Mutations in both the regulatory (Glu22Lys) and essential light chains (Met149Val) result in an unusual pattern of hypertrophy, leading to obstruction of the midventricular cavity. When a human genomic fragment containing the Met149Val essential myosin light(More)