Hanna B. Laurén

Learn More
Kainic acid-induced status epilepticus leads to structural and functional changes in inhibitory GABAA receptors in the adult rat hippocampus, but whether similar changes occur in the developing rat is not known. We have used in situ hybridization to study status epilepticus-induced changes in the GABAAalpha1-alpha5, beta1-beta3, gamma1 and gamma2 subunit(More)
Molecular mechanisms involved in epileptogenesis in the developing brain remain poorly understood. The gene array approach could reveal some of the factors involved by allowing the identification of a broad scale of genes altered by seizures. In this study we used microarray analysis to reveal the gene expression profile of the laser microdissected(More)
The postnatal expression of GABA(A) receptor subunit mRNAs in the rat brain, including the hippocampus, exhibits a unique temporal and regional developmental profile in vivo, which may be altered by external stimuli. Using the in situ hybridization technique we have now studied the in vitro expression of alpha1,alpha2, alpha 4, alpha 5, beta 1, beta 3,(More)
The effects of a prolonged seizure, i.e. status epilepticus (SE), on neurogenesis of dentate granule cells (DGCs) in the immature dentate gyrus (DG) and possible changes in the phenotypes of the newborn neurons have remained incompletely characterized. We have now studied neurogenesis of DGCs in 9-day-old (postnatal, P9) rats 1 week after kainate(More)
Changes in the structure and function of inhibitory GABA(A) receptors may contribute to epileptogenesis. We have used the in situ hybridization technique to study GABA(A) receptor alpha2, alpha4, beta3 and gamma2 subunit mRNA expression in the hippocampus of spontaneously seizing rats with chronic temporal lobe epilepsy. In control rats, all four subunit(More)
Birth asphyxia and hypoxia-ischemia (HI) are important factors affecting the normal development and maturation of the central nervous system (CNS). Depending on the maturity of the brain, HI-induced damage at different ages is region-selective, the white matter (WM) peripheral to the lateral ventricles being selectively vulnerable to damage in premature(More)
The central histaminergic neuronal system is a powerful modulator of brain activity, and its functional disturbance is related to e.g. epilepsy. We have recently shown in the slice culture system that histaminergic neurons attenuate kainic acid (KA)-induced epileptiform activity and neuronal damage in the hippocampus through histamine 1 (H1) receptors. We(More)
GABA, the main inhibitory neurotransmitter in the adult brain, exerts its effects through multiple GABA(A) receptor subtypes with different pharmacological profiles, the alpha subunit variant mainly determining the binding properties of benzodiazepine site on the receptor protein. In adult experimental epileptic animals and in humans with epilepsy,(More)
The central histaminergic neuron system is an important regulator of activity stages such as arousal and sleep. In several epilepsy models, histamine has been shown to modulate epileptic activity and histamine 1 (H1) receptors seem to play a key role in this process. However, little is known about the H1 receptor-mediated seizure regulation during the early(More)
Neurofilament (NF) proteins are expressed in the majority of neurons in the central nervous system, and play a crucial role in the organization of neuronal shape and function. In the present study, we have used immunoblotting and immunocytochemical methods to study the light (NF-L), medium (NF-M ), and heavy (NF-H) molecular weight NF proteins in cultured(More)
  • 1