Learn More
Canopy architecture improvements are a major focus in modern maize (Zea mays L.) breeding because appropriate canopy architecture could allow for the adaptation to high-density planting and high utilisation efficiency of solar energy. Therefore, understanding the genetic basis of canopy architecture-related traits is important for maize breeding. In this(More)
Starch is the major carbon reserve in plant storage organs, the synthesis of which is orchestrated by four major enzymes, ADP-glucose pyrophosphorylase, starch synthase, starch-branching enzyme and starch-debranching enzyme. There is much information available on the function of these key enzymes; however, little is known about their transcriptional(More)
Conditions for the isolation and transfection of maize nucellus protoplasts were established. We demonstrated its utilization for protein expression, localization, protein–protein interaction, and the investigation of PCD-related processes. Plant protoplasts are an important and versatile cell system that is widely used in the analysis of gene(More)
Maize is the leading crop worldwide in terms of both planting area and total yields, but environmental stresses cause significant losses in productivity. Phenylpropanoid compounds play an important role in plant stress resistance; however, the mechanism of their synthesis is not fully understood, especially in regard to the expression and regulation of key(More)
It is important and meaningful to understand the codon usage pattern and the factors that shape codon usage of maize. In this study, trends in synonymous codon usage in maize have been firstly examined through the multivariate statistical analysis on 7402 cDNA sequences. The results showed that the genes positions on the primary axis were strongly(More)
Starch is an essential commodity that is widely used as food, feed, fuel and in industry. However, its mechanism of synthesis is not fully understood, especially in terms of the expression and regulation of the starch synthetic genes. It was reported that the starch synthetic genes were co-expressed during maize endosperm development; however, the mechanism(More)
Starch synthase I (SSI) contributes the majority of the starch synthase activity in developing maize endosperm. In this work, the effects of various plant hormones and sugars on the expression of the starch synthase I gene (ZmSSI) in developing maize endosperms were examined. The accumulation of ZmSSI mRNA was induced using abscisic acid (ABA) but not with(More)
The maize zsS3a gene codes for starch synthase. Transcriptional analysis revealed that it is mainly expressed in endosperm and is induced by abscisic acid (ABA). The 5′-flanking region of zsS3a was isolated, and a 1772 bp zsS3a promoter (PzsS3a) was fused to a Luc reporter gene with a maize Adh1 intron. Transient expression assay by bombardment(More)
Sucrose is not only the carbon source for starch synthesis, but also a signal molecule. Alone or in coordination with ABA, it can regulate the expression of genes involved in starch synthesis. To investigate the molecular mechanisms underlying this effect, maize endosperms were collected from Zea mays L. B73 inbred line 10 d after pollination and treated(More)
Starch synthesis is a key process that influences crop yield and quality, though little is known about the regulation of this complex metabolic pathway. Here, we present the identification of ZmbZIP91 as a candidate regulator of starch synthesis via co-expression analysis in maize (Zea mays L.). ZmbZIP91 was strongly associated with the expression of starch(More)