Learn More
Hashing is a popular approximate nearest neighbor search approach for large-scale image retrieval. Supervised hashing, which incorporates similarity/dissimilarity information on entity pairs to improve the quality of hashing function learning, has recently received increasing attention. However, in the existing supervised hashing methods for images, an(More)
Similarity-preserving hashing is a widely-used method for nearest neighbour search in large-scale image retrieval tasks. For most existing hashing methods, an image is first encoded as a vector of hand-engineering visual features, followed by another separate projection or quantization step that generates binary codes. However, such visual feature vectors(More)
Learning-to-rank for information retrieval has gained increasing interest in recent years. Inspired by the success of sparse models, we consider the problem of sparse learning-to-rank, where the learned ranking models are constrained to be with only a few non-zero coefficients. We begin by formulating the sparse learning-to-rank problem as a convex(More)
In recent years, there has been growing interest in learning to rank. The introduction of feature selection into different learning problems has been proven effective. These facts motivate us to investigate the problem of feature selection for learning to rank. We propose a joint convex optimization formulation which minimizes ranking errors while(More)
In this paper, we aim to automatically render aging faces in a personalized way. Basically, a set of age-group specific dictionaries are learned, where the dictionary bases corresponding to the same index yet from different dictionaries form a particular aging process pattern cross different age groups, and a linear combination of these patterns expresses a(More)
This paper is concerned with a study on the feature selection for ranking. Learning to rank is a useful tool for collaborative filtering and many other collaborative systems, which many algorithms have been proposed for dealing this issue. But feature selection methods receive little attention, despite of their importance in collaborative filtering(More)
Similarity-preserving hashing is a commonly used method for nearest neighbor search in large-scale image retrieval. For image retrieval, deep-network-based hashing methods are appealing, since they can simultaneously learn effective image representations and compact hash codes. This paper focuses on deep-network-based hashing for multi-label images, each of(More)