Learn More
To identify the mechanisms by which molecular variation is introduced into developmental systems, microevolutionary approaches to evolutionary developmental biology have to be taken. Here, we describe the molecular and developmental characterization of laboratory strains of the nematode genus Pristionchus, which lays a foundation for a microevolutionary(More)
Modern evolutionary biology requires integrative approaches that combine life history, population structure, ecology, and development. The nematode Pristionchus pacificus has been established as a model system in which these aspects can be studied in one organism. P. pacificus has well-developed genetic, genomic, and transgenic tools and its ecologic(More)
To understand the evolution of developmental processes, nonmodel organisms in the nematodes, insects, and vertebrates are compared with established model systems. Often, these comparisons suffer from the inability to apply sophisticated technologies to these nonmodel species. In the nematode Pristionchus pacificus, cellular and genetic analyses are used to(More)
For modern biology, precise genome annotations are of prime importance, as they allow the accurate definition of genic regions. We employ state-of-the-art machine learning methods to assay and improve the accuracy of the genome annotation of the nematode Caenorhabditis elegans. The proposed machine learning system is trained to recognize exons and introns(More)
The hermaphroditic nematode Pristionchus pacificus is an established model system for comparative studies with Caenorhabditis elegans in developmental biology, ecology, and population genetics. In this study, we present whole-genome sequencing data of 104 P. pacificus strains and the draft assembly of the obligate outcrossing sister species P. exspectatus.(More)
The diplogastrid nematode Pristionchus pacificus is a nematode model system for comparative studies to Caenorhabditis elegans and integrative evolutionary biology aiming for interdisciplinary approaches of evo-devo, population genetics, and ecology. For this, fieldwork can be combined with laboratory studies, and P. pacificus has a well-developed(More)
Many nematodes form dauer larvae when exposed to unfavorable conditions, representing an example of phenotypic plasticity and a major survival and dispersal strategy. In Caenorhabditis elegans, the regulation of dauer induction is a model for pheromone, insulin, and steroid-hormone signaling. Recent studies in Pristionchus pacificus revealed substantial(More)
Phenotypic plasticity is increasingly recognized to facilitate adaptive change in plants and animals, including insects, nematodes and vertebrates. Plasticity can occur as continuous or discrete (polyphenisms) variation. In social insects, e.g. in ants, some species have workers of distinct size classes while in other closely related species variation in(More)
Phenotypic plasticity has been suggested to act through developmental switches, but little is known about associated molecular mechanisms. In the nematode Pristionchus pacificus, the sulfatase eud-1 was identified as part of a developmental switch controlling mouth-form plasticity governing a predatory versus bacteriovorous mouth-form decision. Here we show(More)
The development of multicellular organisms is coordinated by various gene regulatory mechanisms that ensure correct spatio-temporal patterns of gene expression. Recently, the role of antisense transcription in gene regulation has moved into focus of research. To characterize genome-wide patterns of antisense transcription and to study their evolutionary(More)
  • 1