Learn More
Feature selection is an important problem for pattern classification systems. We study how to select good features according to the maximal statistical dependency criterion based on mutual information. Because of the difficulty in directly implementing the maximal dependency condition, we first derive an equivalent form, called(More)
How to selecting a small subset out of the thousands of genes in microarray data is important for accurate classification of phenotypes. Widely used methods typically rank genes according to their differential expressions among phenotypes and pick the top-ranked genes. We observe that feature sets so obtained have certain redundancy and study methods to(More)
Comprehensive knowledge of the brain's wiring diagram is fundamental for understanding how the nervous system processes information at both local and global scales. However, with the singular exception of the C. elegans microscale connectome, there are no complete connectivity data sets in other species. Here we report a brain-wide, cellular-level,(More)
This paper presents a new study on a method of designing a multi-class classifier: Data-driven Error Correcting Output Coding (DECOC). DECOC is based on the principle of Error Correcting Output Coding (ECOC), which uses a code matrix to decompose a multi-class problem into multiple binary problems. ECOC for multi-class classification hinges on the design of(More)
The V3D system provides three-dimensional (3D) visualization of gigabyte-sized microscopy image stacks in real time on current laptops and desktops. V3D streamlines the online analysis, measurement and proofreading of complicated image patterns by combining ergonomic functions for selecting a location in an image directly in 3D space and for displaying(More)
We established a collection of 7,000 transgenic lines of Drosophila melanogaster. Expression of GAL4 in each line is controlled by a different, defined fragment of genomic DNA that serves as a transcriptional enhancer. We used confocal microscopy of dissected nervous systems to determine the expression patterns driven by each fragment in the adult brain and(More)
In situ staining of a target mRNA at several time points during the development of a D. melanogaster embryo gives one a detailed spatio-temporal view of the expression pattern of a given gene. We have developed algorithms and software for analyzing a database of such images with the goal of being able to identify coor-dinately expressed genes and further(More)
Digital reconstruction of neurons from microscope images is an important and challenging problem in neuroscience. In this paper, we propose a model-based method to tackle this problem. We first formulate a model structure, then develop an algorithm for computing it by carefully taking into account morphological characteristics of neurons, as well as the(More)
Few technologies are more widespread in modern biological laboratories than imaging. Recent advances in optical technologies and instrumentation are providing hitherto unimagined capabilities. Almost all these advances have required the development of software to enable the acquisition, management, analysis and visualization of the imaging data. We review(More)
MOTIVATION Tracing of neuron morphology is an essential technique in computational neuroscience. However, despite a number of existing methods, few open-source techniques are completely or sufficiently automated and at the same time are able to generate robust results for real 3D microscopy images. RESULTS We developed all-path-pruning 2.0 (APP2) for 3D(More)