Learn More
Recent advances in high-throughput genotyping have made it easier to combine information from different mapping populations into consensus genetic maps, which provide increased marker density and genome coverage compared to individual maps. Previously, a single nucleotide polymorphism (SNP)-based genotyping platform was developed and used to genotype 373(More)
As the staple food for 35% of the world's population, wheat is one of the most important crop species. To date, sequence-based tools to accelerate wheat improvement are lacking. As part of the international effort to sequence the 17-billion-base-pair hexaploid bread wheat genome (2n = 6x = 42 chromosomes), we constructed a bacterial artificial chromosome(More)
The analysis of the complex genome of common wheat (Triticum aestivum, 2n = 6x = 42, genome formula AABBDD) is hampered by its large size ( approximately 17 000 Mbp) and allohexaploid nature. In order to simplify its analysis, we developed a generic strategy for dissecting such large and complex genomes into individual chromosomes. Chromosome 3B was(More)
Wheat is one of the world's most important crops and is characterized by a large polyploid genome. One way to reduce genome complexity is to isolate single chromosomes using flow cytometry. Low coverage DNA sequencing can provide a snapshot of individual chromosomes, allowing a fast characterization of their main features and comparison with other genomes.(More)
BACKGROUND Rye (Secale cereale L.) belongs to tribe Triticeae and is an important temperate cereal. It is one of the parents of man-made species Triticale and has been used as a source of agronomically important genes for wheat improvement. The short arm of rye chromosome 1 (1RS), in particular is rich in useful genes, and as it may increase yield, protein(More)
The wheat genome sequence is an essential tool for advanced genomic research and improvements. The generation of a high-quality wheat genome sequence is challenging due to its complex 17 Gb polyploid genome. To overcome these difficulties, sequencing through the construction of BAC-based physical maps of individual chromosomes is employed by the wheat(More)
Introgression of several genomic loci from tetraploid Triticum militinae into bread wheat cv. Tähti has increased resistance of introgression line 8.1 to powdery mildew in seedlings and adult plants. In our previous work, only a major quantitative trait locus (QTL) on chromosome 4AL of the line 8.1 contributed significantly to resistance, whereas QTL on(More)
The adult plant stem rust resistance gene Sr2 was introgressed into hexaploid wheat cultivar (cv) Marquis from tetraploid emmer wheat cv Yaroslav, to generate stem rust resistant cv Hope in the 1920s. Subsequently, Sr2 has been widely deployed and has provided durable partial resistance to all known races of Puccinia graminis f. sp. tritici. This report(More)
BACKGROUND The purpose of the study is to elucidate the sequence composition of the short arm of rye chromosome 1 (Secale cereale) with special focus on its gene content, because this portion of the rye genome is an integrated part of several hundreds of bread wheat varieties worldwide. METHODOLOGY/PRINCIPAL FINDINGS Multiple Displacement Amplification of(More)
The species cytoplasm specific (scs) genes affect nuclear-cytoplasmic interactions in interspecific hybrids. A radiation hybrid (RH) mapping population of 188 individuals was employed to refine the location of the scs ae locus on Triticum aestivum chromosome 1D. “Wheat Zapper,” a comparative genomics tool, was used to predict synteny between wheat(More)