Learn More
In 1994, a “Pan-European Programme for Intensive and Continuous Monitoring of Forest Ecosystems” started to contribute to a better understanding of the impact of air pollution, climate change and natural stress factors on forest ecosystems. The programme today counts approximately 760 permanent observation plots including near 500 plots with data on both(More)
— Monitoring of natural vegetation succession is essential for optimal management of river floodplains in the Netherlands. As the maximum discharge capacity depends on the hydraulic resistance of vegetation, a key biophysical parameter for floodplain monitoring is vegetation biomass. The objective of this study is to investigate the feasibility of mapping(More)
A study was conducted to determine the joint effect of gaseous atmospheric pollutants and trace elements on epiphytic lichens. We used our data to test the hypothesis that lichens are generally insensitive to toxic effects of trace elements, and can therefore be used as accumulator organisms to estimate concentrations of these elements in the environment.(More)
Deposition of nitrogen is assumed to cause loss of botanical diversity, probably through increased production and exclusion of less competitive species. However, if production is (co-)limited by phosphorus, acceleration of the phosphorus cycle may be responsible for the diversity loss and, where that is the case, nitrogen emission reduction may turn out to(More)
  • 1