Han-Sheng Chuang

Learn More
Vascular endothelial cells (ECs) are constantly exposed to blood flow-induced shear stress, but the mechanism of force-specific activation of their signaling to modulate cellular function remains unclear. We have demonstrated that bone morphogenetic protein receptor (BMPR)-specific Smad1/5 can be force-specifically activated by oscillatory shear stress(More)
Degeneration is a senescence process that occurs in all living organisms. Although tremendous efforts have been exerted to alleviate this degenerative tendency, minimal progress has been achieved to date. The nematode, Caenorhabditis elegans (C. elegans), which shares over 60% genetic similarities with humans, is a model animal that is commonly used in(More)
STUDY OBJECTIVES To develop a method, called Caenorhabditis-in-Drop (CiD), encapsulating single worms in aqueous drops, for parallel analysis of behavioral quiescence in C. elegans nematodes. DESIGN We designed, constructed, and tested a device that houses an array of aqueous droplets laden with individual worms. The droplets are separated and covered by(More)
Hybrid opto-electric manipulation in microfluidics/nanofluidics refers to a set of methodologies employing optical modulation of electrokinetic schemes to achieve particle or fluid manipulation at the micro- and nano-scale. Over the last decade, a set of methodologies, which differ in their modulation strategy and/or the length scale of operation, have(More)
Quantifying the motility of micro-organisms is beneficial in understanding their biomechanical properties. This paper presents a simple image-based algorithm to derive the kinetic power and propulsive force of the nematode Caenorhabditis elegans. To avoid unnecessary disturbance, each worm was confined in an aqueous droplet of 0.5 μl. The droplet was(More)
We demonstrate a new hybrid optoelectric technique that can manipulate objects across several length scales. The technique leverages a variety of different physical mechanisms to achieve the dynamic manipulation of droplets and also the in situ concentration of colloidal particles suspended in the droplets. Various physical mechanisms such as(More)
We demonstrate for the first time the dielectrophoretic trapping and manipulation of a whole animal, the nematode Caenorhabditis elegans. We studied the effect of the electric field on the nematode as a function of field intensity and frequency. We identified a range of electric field intensities and frequencies that trap worms without apparent adverse(More)
Relay is one of major features considered for IMT-Advanced systems. The main function of relay station is to enhance the network capacity and extend the coverage area. The paper focuses on multi-hop routing mechanism used in relay WiMAX networks. The performance of routing path selection is based on the throughput and packet loss ratio for the downlink(More)
Current lab-on-a-chip (LoC) devices are assay-specific and are custom-built for each single experiment. Performing an experiment requires scientists or engineers to go through the time-consuming process of designing, fabricating, and testing a chip before conducting the actual experiment. This prolonged cycle can take months to complete, increasing effort(More)
Caenorhabditis (C.) elegans is a model animal used in genetics, neuroscience, and developmental biology. Researchers often immobilize squirming worms to obtain high-quality images for analysis. However, current methods usually require physical contact or anesthetics. This can cause injuries to worm bodies or neuron disturbances. This study presents an(More)