Learn More
The identification of genes to be deleted or amplified is an essential step in metabolic engineering for strain improvement toward the enhanced production of desired bioproducts. In the past, several methods based on flux analysis of genome-scale metabolic models have been developed for identifying gene targets for deletion. Genome-wide identification of(More)
BACKGROUND The metabolomic approaches for mining biomarkers of women's cancers based on gas chromatography-mass spectrometry and liquid chromatography-mass spectrometry combined with partial least squares-discriminant analysis are described. METHODS To identify urinary potential biomarkers, the qualitative and quantitative analyses were introduced with 10(More)
Microbial production of 2,3-butanediol (2,3-BDO) has been attracting increasing interest because of its high value and various industrial applications. In this study, high production of 2,3-BDO using a previously isolated bacterium Klebsiella oxytoca M1 was carried out by optimizing fermentation conditions and overexpressing acetoin reductase (AR).(More)
The efficient co-fermentation of glucose and xylose is necessary for the economically feasible bioethanol production from lignocellulosic biomass. Even with xylose utilizing Saccharomyces cerevisiae, the efficiency of the lignocellulosic ethanol production remains suboptimal mainly due to the low conversion yield of xylose to ethanol. In this study, we(More)
BACKGROUND 2,3-Butanediol (2,3-BDO) is a promising bio-based chemical because of its wide industrial applications. Previous studies on microbial production of 2,3-BDO has focused on sugar fermentation. Alternatively, biodiesel-derived crude glycerol can be used as a cheap resource for 2,3-BDO production; however, a considerable formation of 1,3-propanediol(More)
The paradigm of synthetic biology has been evolving, along with relevant engineering, to achieve designed bio-systems. Synthetic biology has reached the point where it is possible to develop microbial strains to produce desired chemicals. Recent advances in this field have promoted metabolic engineering of Corynebacterium glutamicum as an amino-acid(More)
Currently, the majority of tools in synthetic biology have been designed and constructed for model organisms such as Escherichia coli and Saccharomyces cerevisiae. In order to broaden the spectrum of organisms accessible to such tools, we established a synthetic biological platform, called CoryneBrick, for gene expression in Corynebacterium glutamicum as a(More)
The potential for production of chemicals from microalgal biomass has been considered as an alternative route for CO₂ mitigation and establishment of biorefineries. This study presents the development of consolidated bioprocessing for succinate production from microalgal biomass using engineered Corynebacterium glutamicum. Starch-degrading and(More)
Although microbes directly accepting electrons from a cathode have been applied for CO2 reduction to produce multicarbon-compounds, a high electron demand and low product concentration are critical limitations. Alternatively, the utilization of electrons as a co-reducing power during fermentation has been attempted, but there must be exogenous mediators due(More)
Corynebacterium glutamicum is an important microorganism in the biochemical industry for the production of various platform chemicals. However, despite its importance, a limited number of studies have been conducted on how to constitute gene expression cassettes in engineered C. glutamicum to obtain desired amounts of the target products. Therefore, in this(More)