Learn More
Ca(2+) binding to synaptotagmin 1 triggers fast exocytosis of synaptic vesicles that have been primed for release by SNARE-complex assembly. Besides synaptotagmin 1, fast Ca(2+)-triggered exocytosis requires complexins. Synaptotagmin 1 and complexins both bind to assembled SNARE complexes, but it is unclear how their functions are coupled. Here we propose(More)
C(2) domains are well characterized as Ca(2+)/phospholipid-binding modules, but little is known about how they mediate protein-protein interactions. In neurons, a Munc13-1 C(2)A-domain/RIM zinc-finger domain (ZF) heterodimer couples synaptic vesicle priming to presynaptic plasticity. We now show that the Munc13-1 C(2)A domain homodimerizes, and that(More)
The SM (Sec1/Munc18-like) protein Munc18-1 and the soluble N-ethylmaleimide-sensitive factor attachment protein (SNAP) receptor (SNARE) proteins syntaxin-1, SNAP-25, and synaptobrevin/VAMP (vesicle-associated membrane protein) constitute the core fusion machinery for synaptic vesicle exocytosis. Strikingly, Munc18-1 interacts with neuronal SNARE proteins in(More)
The function of synaptotagmin as a Ca(2+) sensor in neurotransmitter release involves Ca(2+)-dependent phospholipid binding to its two C(2) domains, but this activity alone does not explain why Ca(2+) binding to the C(2)B domain is more critical for release than Ca(2+) binding to the C(2)A domain. Synaptotagmin also binds to SNARE complexes, which are(More)
The core of the membrane fusion machinery that governs neurotransmitter release includes the SNARE proteins syntaxin-1, SNAP-25 and synaptobrevin, which form a tight "SNARE complex", and Munc18-1, which binds to the SNARE complex and to syntaxin-1 folded into a closed conformation. Release is also controlled by specialized proteins such as complexins, which(More)
The neuronal protein synaptotagmin 1 functions as a Ca(2+) sensor in exocytosis via two Ca(2+)-binding C(2) domains. The very similar synaptotagmin 4, which includes all the predicted Ca(2+)-binding residues in the C(2)B domain but not in the C(2)A domain, is also thought to function as a neuronal Ca(2+) sensor. Here we show that, unexpectedly, both C(2)(More)
Auxilin, a J-domain containing protein, recruits the Hsc70 uncoating ATPase to newly budded clathrin-coated vesicles. The timing of auxilin arrival determines that uncoating will commence only after the clathrin lattice has fully assembled and after membrane fission is complete. Auxilin has a region resembling PTEN, a PI3P phosphatase. We have determined(More)
Regulated secretion is a fundamental process underlying the function of many cell types. In particular, acrosomal exocytosis in mammalian sperm is essential for egg fertilization. Regulated secretion requires SNARE proteins and, in neurons, also synaptotagmin I and complexin. Recent reports suggest that complexin imposes a fusion block that is released by(More)
RIM proteins play critical roles in synaptic vesicle priming and diverse forms of presynaptic plasticity. The C-terminal C2B domain is the only module that is common to all RIMs but is only distantly related to well-studied C2 domains, and its three-dimensional structure and interactions have not been characterized in detail. Using NMR spectroscopy, we now(More)
RIMs are large proteins that contain two C2-domains and are localized at presynaptic active zones, where neurotransmitters are released. RIMs play key roles in synaptic vesicle priming and regulation of presynaptic plasticity. A mutation in the RIM1 C2A-domain has been implicated in autosomal dominant cone-rod dystrophy (CORD7). The RIM C2A-domain does not(More)