Hamish S Greig

Learn More
The effects of global and local environmental changes are transmitted through networks of interacting organisms to shape the structure of communities and the dynamics of ecosystems. We tested the impact of elevated temperature on the top-down and bottom-up forces structuring experimental freshwater pond food webs in western Canada over 16 months.(More)
Increases in the frequency, severity and duration of temperature extremes are anticipated in the near future. Although recent work suggests that changes in temperature variation will have disproportionately greater effects on species than changes to the mean, much of climate change research in ecology has focused on the impacts of mean temperature change.(More)
Climate warming is occurring in concert with other anthropogenic changes to ecosystems. However, it is unknown whether and how warming alters the importance of top-down vs. bottom-up control over community productivity and variability. We performed a 16-month factorial experimental manipulation of warming, nutrient enrichment, and predator presence in(More)
Changing temperature can substantially shift ecological communities by altering the strength and stability of trophic interactions. Because many ecological rates are constrained by temperature, new approaches are required to understand how simultaneous changes in multiple rates alter the relative performance of species and their trophic interactions. We(More)
Acidification of freshwaters is a global phenomenon, occurring both through natural leaching of organic acids and through human activities from industrial emissions and mining. The West Coast of the South Island, New Zealand, has both naturally acidic and acid mine drainage (AMD) streams enabling us to investigate the response of fish communities to a(More)
1. Knowledge of the influence of predatory fish in detritus-based stream food webs is poor. We tested whether larval abundance of the New Zealand leaf-shredding caddisfly, Zelandopsyche ingens (family Oeconesidae), was affected by the presence of predatory brown trout, Salmo trutta and the abundance of their primary detrital resource (Nothofagus leaves). 2.(More)
Surrogate concepts are used in all sub-disciplines of environmental science. However, controversy remains regarding the extent to which surrogates are useful for resolving environmental problems. Here, we argue that conflicts about the utility of surrogates (and the related concepts of indicators and proxies) often reflect context-specific differences in(More)
Trophic cascades are indirect positive effects of predators on resources via control of intermediate consumers. Larger-bodied predators appear to induce stronger trophic cascades (a greater rebound of resource density toward carrying capacity), but how this happens is unknown because we lack a clear depiction of how the strength of trophic cascades is(More)
Many species are habitat specialists along environmental gradients as a result of contrasting selection pressures, but others maintain broad distributions along such gradients. Phenotypic plasticity explains the persistence of some generalists, but not the broad distributions of species with fixed traits. We combined comparative and experimental data to(More)
1. In the face of human-induced declines in the abundance of common species, ecologists have become interested in quantifying how changes in density affect rates of biophysical processes, hence ecosystem function. We manipulated the density of a dominant detritivore (the cased caddisfly, Limnephilus externus) in subalpine ponds to measure effects on the(More)