Hamilton Link

Learn More
We examine the efficacy of using discrete Dynamic Bayesian Networks (dDBNs), a data-driven modeling technique employed in machine learning, to identify functional correlations among neuroanatomical regions of interest. Unlike many neuroimaging analysis techniques, this method is not limited by linear and/or Gaussian noise assumptions. It achieves this by(More)
It is commonly believed that scale-free networks are robust to massive numbers of random node deletions. For example, Cohen et al. in (1) study scale-free networks including some which approximate the measured degree distribution of the Internet. Their results suggest that if each node in this network failed independently with probability 0.99, most of the(More)
Awerbuch et al.'s approach to distributed recommender systems (DRSs) is to have agents sample products at random while randomly querying one another for the best item they have found; we improve upon this by adding a communication network. Agents can only communicate with their immediate neighbors in the network, but neighboring agents may or may not(More)
One approach to distributed recommender systems is to have users sample products at random and randomly query one another for the best item they have found. We have been considering refinements to this approach that take advantage of a communication network; users may share information only with their immediate neighbors, who either by design or by nature(More)
  • 1