Hamid Soltanian-Zadeh

Learn More
This paper presents a new approach to rotation invariant texture classification. The proposed approach benefits from the fact that most of the texture patterns either have directionality (anisotropic textures) or are not with a specific direction (isotropic textures). The wavelet energy features of the directional textures change significantly when the(More)
A new rotation-invariant texture-analysis technique using Radon and wavelet transforms is proposed. This technique utilizes the Radon transform to convert the rotation to translation and then applies a translation-invariant wavelet transform to the result to extract texture features. A kappa-nearest neighbors classifier is employed to classify texture(More)
We introduce a bottom-up model for integrating electroencephalography (EEG) or magnetoencephalography (MEG) with functional magnetic resonance imaging (fMRI). An extended neural mass model is proposed based on the physiological principles of cortical minicolumns and their connections. The fMRI signal is extracted from the proposed neural mass model by(More)
This paper presents development and application of a feature extraction method for magnetic resonance imaging (MRI), without explicit calculation of tissue parameters. A three-dimensional (3-D) feature space representation of the data is generated in which normal tissues are clustered around prespecified target positions and abnormalities are clustered(More)
Thalamus is an important neuro-anatomic structure in the brain. In this paper, an automated method is presented to segment thalamus from magnetic resonance images (MRI). The method is based on a discrete dynamic contour model that consists of vertices and edges connecting adjacent vertices. The model starts from an initial contour and deforms by external(More)
The hippocampus has been the primary region of interest in the preoperative imaging investigations of mesial temporal lobe epilepsy (mTLE). Hippocampal imaging and electroencephalographic features may be sufficient in several cases to declare the epileptogenic focus. In particular, hippocampal atrophy, as appreciated on T1-weighted (T1W) magnetic resonance(More)
The paper presents a multidimensional nonlinear edge-preserving filter for restoration and enhancement of magnetic resonance images (MRI). The filter uses both interframe (parametric or temporal) and intraframe (spatial) information to filter the additive noise from an MRI scene sequence. It combines the approximate maximum likelihood (equivalently, least(More)
Common fMRI data processing techniques usually minimize a temporal cost function or fit a temporal model to extract an activity map. Here, we focus on extracting a highly, spatially reproducible statistical parametric map (SPM) from fMRI data using a cost function that does not depend on a model of the subjects' temporal response. Based on a generalized(More)