Learn More
A new rotation-invariant texture-analysis technique using Radon and wavelet transforms is proposed. This technique utilizes the Radon transform to convert the rotation to translation and then applies a translation-invariant wavelet transform to the result to extract texture features. A k-nearest neighbors classifier is employed to classify texture patterns.(More)
BACKGROUND AND PURPOSE After stroke, brain tissue undergoes time-dependent heterogeneous histopathological change. These tissue alterations have MRI characteristics that allow segmentation of ischemic from nonischemic tissue. Moreover, MRI segmentation generates different zones within the lesion that may reflect heterogeneity of tissue damage. METHODS A(More)
We present a method for coregistration and warping of magnetic resonance images (MRI) to histological sections for comparison purposes. This methodology consists of a modified head and hat surface-based registration algorithm followed by a new automated warping approach using nonlinear thin plate splines to compensate for distortions between the data sets.(More)
This paper presents development and application of a feature extraction method for magnetic resonance imaging (MRI), without explicit calculation of tissue parameters. A three-dimensional (3-D) feature space representation of the data is generated in which normal tissues are clustered around prespecified target positions and abnormalities are clustered(More)
This paper proposes image processing algorithms to recognize five types of white blood cells in peripheral blood automatically. First, a method based on Gram-Schmidt orthogonalization is proposed along with a snake algorithm to segment nucleus and cytoplasm of the cells. Then, a variety of features are extracted from the segmented regions. Next, most(More)
Thalamus is an important neuro-anatomic structure in the brain. In this paper, an automated method is presented to segment thalamus from magnetic resonance images (MRI). The method is based on a discrete dynamic contour model that consists of vertices and edges connecting adjacent vertices. The model starts from an initial contour and deforms by external(More)
—Gait is an idiosyncratic biometric that can be used for human identification at a distance and as a result gained growing interest in intelligent visual surveillance. In this paper , an efficient gait recognition method based on describing subject outer body contour deformations using wavelet packets is proposed. With the use of Matching Pursuit algorithm,(More)
This paper presents and compares two image processing methods for differentiating benign from malignant microcalcifications in mammograms. The gold standard method for differentiating benign from malignant microcalcifications is biopsy, which is invasive. The goal of the proposed methods is to reduce rate of biopsies with negative results. In the first(More)