Learn More
A new rotation-invariant texture-analysis technique using Radon and wavelet transforms is proposed. This technique utilizes the Radon transform to convert the rotation to translation and then applies a translation-invariant wavelet transform to the result to extract texture features. A k-nearest neighbors classifier is employed to classify texture patterns.(More)
BACKGROUND Determining malignancy of prostate pathological samples is important for treatment planning of prostate cancer. Traditionally, this is performed by expert pathologists who evaluate the structure of prostate glands in the biopsy samples. However, this is a subjective task due to inter- and intra-observer differences among pathologists. Also, it is(More)
BACKGROUND AND PURPOSE After stroke, brain tissue undergoes time-dependent heterogeneous histopathological change. These tissue alterations have MRI characteristics that allow segmentation of ischemic from nonischemic tissue. Moreover, MRI segmentation generates different zones within the lesion that may reflect heterogeneity of tissue damage. METHODS A(More)
In this paper we present a new 3D discrete dynamic surface model. The model consists of vertices and edges, which connect adjacent vertices. Basic geometry of the model surface is generated by triangle patches. The model deforms by internal and external forces. Internal forces are obtained from local geometry of the model and are related to the local(More)
BACKGROUND AND PURPOSE Multiparametric MRI generates different zones within the lesion that may reflect heterogeneity of tissue damage in cerebral ischemia. This study presents the application of a novel model of tissue characterization based on an angular separation between tissues obtained with the use of an objective (unsupervised) computer segmentation(More)
This paper proposes image processing algorithms to recognize five types of white blood cells in peripheral blood automatically. First, a method based on Gram-Schmidt orthogonalization is proposed along with a snake algorithm to segment nucleus and cytoplasm of the cells. Then, a variety of features are extracted from the segmented regions. Next, most(More)
We present a method for coregistration and warping of magnetic resonance images (MRI) to histological sections for comparison purposes. This methodology consists of a modified head and hat surface-based registration algorithm followed by a new automated warping approach using nonlinear thin plate splines to compensate for distortions between the data sets.(More)
This paper presents development and application of a feature extraction method for magnetic resonance imaging (MRI), without explicit calculation of tissue parameters. A three-dimensional (3-D) feature space representation of the data is generated in which normal tissues are clustered around prespecified target positions and abnormalities are clustered(More)
Thalamus is an important neuro-anatomic structure in the brain. In this paper, an automated method is presented to segment thalamus from magnetic resonance images (MRI). The method is based on a discrete dynamic contour model that consists of vertices and edges connecting adjacent vertices. The model starts from an initial contour and deforms by external(More)