Hamed Pirsiavash

Learn More
We analyze the computational problem of multi-object tracking in video sequences. We formulate the problem using a cost function that requires estimating the number of tracks, as well as their birth and death states. We show that the global solution can be obtained with a greedy algorithm that sequentially instantiates tracks using shortest path(More)
We present a novel dataset and novel algorithms for the problem of detecting activities of daily living (ADL) in firstperson camera views. We have collected a dataset of 1 million frames of dozens of people performing unscripted, everyday activities. The dataset is annotated with activities, object tracks, hand positions, and interaction events. ADLs differ(More)
We introduce a new large-scale video dataset designed to assess the performance of diverse visual event recognition algorithms with a focus on continuous visual event recognition (CVER) in outdoor areas with wide coverage. Previous datasets for action recognition are unrealistic for real-world surveillance because they consist of short clips showing one(More)
We capitalize on large amounts of unlabeled video in order to learn a model of scene dynamics for both video recognition tasks (e.g. action classification) and video generation tasks (e.g. future prediction). We propose a generative adversarial network for video with a spatio-temporal convolutional architecture that untangles the scene’s foreground from the(More)
We describe an algorithm for learning bilinear SVMs. Bilinear classifiers are a discriminative variant of bilinear models, which capture the dependence of data on multiple factors. Such models are particularly appropriate for visual data that is better represented as a matrix or tensor, rather than a vector. Matrix encodings allow for more natural(More)
The design and implementation of a search engine for lecture webcasts is described. A searchable text index is created allowing users to locate material within lecture videos found on a variety of websites such as YouTube and Berkeley webcasts. The index is created from words on the presentation slides appearing in the video along with any associated(More)
Anticipating actions and objects before they start or appear is a difficult problem in computer vision with several real-world applications. This task is challenging partly because it requires leveraging extensive knowledge of the world that is difficult to write down. We believe that a promising resource for efficiently learning this knowledge is through(More)
We address the problem of localizing and estimating the fine-pose of objects in the image with exact 3D models. Our main focus is to unify contributions from the 1970s with recent advances in object detection: use local keypoint detectors to find candidate poses and score global alignment of each candidate pose to the image. Moreover, we also provide a new(More)
Object detection is a challenging task in visual understanding domain, and even more so if the supervision is to be weak. Recently, few efforts to handle the task without expensive human annotations is established by promising deep neural network. A new architecture of cascaded networks is proposed to learn a convolutional neural network (CNN) under such(More)
In many computer vision applications, machines will need to reason beyond the present, and predict the future. This task is challenging because it requires leveraging extensive commonsense knowledge of the world that is difficult to write down. We believe that a promising resource for efficiently obtaining this knowledge is through the massive amounts of(More)