Learn More
— Most of the existing demand side management programs focus primarily on the interactions between a utility company and its customers/users. In this paper, we present an autonomous and distributed demand side energy management system among users that takes advantage of a two-way digital communication infrastructure which is envisioned in the future smart(More)
— Real-time electricity pricing models can potentially lead to economic and environmental advantages compared to the current common flat rates. In particular, they can provide end users with the opportunity to reduce their electricity expenditures by responding to pricing that varies with different times of the day. However, recent studies have revealed(More)
—In the future smart grid, both users and power companies can potentially benefit from the economical and environmental advantages of smart pricing methods to more effectively reflect the fluctuations of the wholesale price into the customer side. In addition, smart pricing can be used to seek social benefits and to implement social objectives. To achieve(More)
— While a large body of work has recently focused on reducing data center's energy expenses, there exists no prior work on investigating the trade-off between minimizing data center's energy expenditure and maximizing their revenue for various Internet and cloud computing services that they may offer. In this paper, we seek to tackle this shortcoming by(More)
—This paper surveys the opportunities and challenges in an emerging area of research that has the potential to significantly ease the incorporation of renewable energy into the grid as well as electric power peak-load shaving: data center demand response. Data center demand response sits at the intersection of two growing fields: energy efficient data(More)
— In a wireless mesh network (WMN) with a number of stationary wireless routers, the aggregate capacity can be increased when each router is equipped with multiple network interface cards (NICs) and each NIC within a router is assigned to a distinct orthogonal frequency channel. In this paper, given the logical topology of the network, we formulate the(More)
— The aggregate capacity of wireless mesh networks can be increased by the use of multiple channels. Stationary wireless routers are equipped with multiple network interface cards (NICs). Each NIC is assigned with a distinct frequency channel. In this paper, we formulate the Joint Optimal Channel Assignment and Congestion Control (JOCAC) as a decentralized(More)
— Random access has been studied for decades to achieve simple wireless medium access control (MAC). Some of the distributed scheduling algorithms for throughput or utility maximization also take the form of random access, although extensive message passing among the nodes is required. In this paper, we would like to answer this question: is it possible to(More)
— A multi-channel wireless mesh network (MC-WMN) consists of a number of stationary wireless routers, where each router is equipped with multiple network interface cards (NICs). Each interface operates on a distinct frequency channel. Two neighboring routers establish a logical link if each one has an interface operating on a common channel. Given the(More)
— The aggregate capacity of wireless mesh networks can be increased by the use of multiple frequency channels and multiple network interface cards in each router. Recent results have shown that the performance can further be increased when both non-overlapped and partially overlapped channels are being used. In this paper, we propose a linear model for a(More)