Learn More
Receptors constitute the interface of cells to their external environment. These molecules bind specific ligands involved in multiple processes, such as signal transduction and nutrient transport. Although a variety of cell surface receptors undergo endocytosis, the systems-level design principles that govern the evolution of receptor trafficking dynamics(More)
BACKGROUND In addition to initiating signaling events, the activation of cell surface receptors also triggers regulatory processes that restrict the duration of signaling. Acute attenuation of signaling can be accomplished either via ligand-induced internalization of receptors (endocytic downregulation) or via ligand-induced receptor desensitization. These(More)
Although the ERK pathway has a central role in the response of cells to growth factors, its regulatory structure and dynamics are incompletely understood. To investigate ERK activation in real time, we expressed an ERK-GFP fusion protein in human mammary epithelial cells. On EGF stimulation, we observed sustained oscillations of the ERK-GFP fusion protein(More)
The ability to detect regulatory elements within genome sequences is important in understanding how gene expression is controlled in biological systems. In this work, microarray data analysis is combined with genome sequence analysis to predict DNA sequences in the photosynthetic bacterium Rhodobacter sphaeroides that bind the regulators PrrA, PpsR and(More)
Amphotericin B is a powerful but toxic antifungal antibiotic that is used to treat systemic infections. It forms ionic membrane channels in fungal cells. These antibiotic/sterol channels are responsible for the leakage of ions, which causes cell destruction. The detailed molecular properties and structure of amphotericin B channels are still unknown. In the(More)
The human epidermal growth factor receptor (HER/ErbB) system comprises the epidermal growth factor receptor (EGFR/HER1) and three other homologs, namely HERs 2-4. This receptor system plays a critical role in cell proliferation and differentiation and receptor overexpression has been associated with poor prognosis in cancers of the epithelium. Here, we(More)
We have developed a new kinetic model to study how microbial dynamics are affected by the heterogeneity in the physical structure of the environment and by different strategies for hydrolysis of polymeric carbon. The hybrid model represented the dynamics of substrates and enzymes using a continuum representation and the dynamics of the cells were modeled(More)
The dynamics of how the constituent components of a natural system interact defines the spatio-temporal response of the system to stimuli. Modeling the kinetics of the processes that represent a biophysical system has long been pursued with the aim of improving our understanding of the studied system. Due to the unique properties of biological systems, in(More)
Endocytic trafficking of many types of receptors can have profound effects on subsequent signaling events. Quantitative models of these processes, however, have usually considered trafficking and signaling independently. Here, we present an integrated model of both the trafficking and signaling pathway of the epidermal growth factor receptor (EGFR) using a(More)
Amphotericin B (AmB) is a very effective anti-fungal polyene macrolide antibiotic whose usage is limited by its toxicity. Lack of a complete understanding of AmB's molecular mechanism has impeded attempts to design less toxic AmB derivatives. The antibiotic is known to interact with sterols present in the cell membrane to form ion channels that disrupt(More)