Halil Tanyer Eyyuboglu

Learn More
The scintillation index is formulated for a flat-topped Gaussian beam source in atmospheric turbulence. The variations of the on-axis scintillations at the receiver plane are evaluated versus the link length, the size of the flat-topped Gaussian source, and the wavelength at selected flatness scales. The existing source model that represents the flat-topped(More)
Hermite-sine-Gaussian and Hermite-sinh-Gaussian laser beam intensities in a turbulent atmosphere are investigated. The received intensity is formulated by applying the extended Huygens-Fresnel principle to generalized Hermite-hyperbolic-Gaussian and Hermite-sinusoidal-Gaussian beam incidences. From this result, the association to different types of(More)
Propagations of coherent and partially coherent flat-topped beams through a focusing optical system are formulated. The radiation force on a Rayleigh dielectric sphere induced by focused coherent and partially coherent flat-topped beams is investigated theoretically. It is found that we can increase the transverse trapping range at the planes near the focal(More)
On the basis of the unified theory of coherence and polarization, we investigate the behavior of the state of polarization of a stochastic electromagnetic beam in a Gaussian cavity. Formulations both in terms of Stokes parameters and in terms of polarization ellipse are given. We show that the state of polarization stabilizes, except in the case of a(More)
Propagation of stochastic electromagnetic beams through paraxial ABCD optical systems operating through turbulent atmosphere is investigated with the help of the ABCD matrices and the generalized Huygens-Fresnel integral. In particular, the analytic formula is derived for the cross-spectral density matrix of an electromagnetic Gaussian Schell-model (EGSM)(More)
A tensor method is used to formulate the on-axis scintillation index for an elliptical Gaussian beam (EGB; astigmatic Gaussian beam) propagating in a weak turbulent atmosphere. Variations of the on-axis scintillation of an EGB are studied. It is interesting to find that the scintillation index of an EGB can be smaller than that of a circular Gaussian beam(More)
Based on the generalized beam formulation, we derive the scintillation index and selectively evaluate it for cos-Gaussian and annular beams propagating in weak atmospheric turbulence. Dependence of the scintillation index on propagation length, focusing and displacement parameters, wavelength of operation, and source size are individually investigated. From(More)
Hermite-cosine-Gaussian (HcosG) laser beams are studied. The source plane intensity of the HcosG beam is introduced and its dependence on the source parameters is examined. By application of the Fresnel diffraction integral, the average receiver intensity of HcosG beam is formulated for the case of propagation in turbulent atmosphere. The average receiver(More)
By using the generalized beam formulation, the scintillation index is derived and evaluated for cosh-Gaussian beams in a turbulent atmosphere. Comparisons are made to cos-Gaussian and Gaussian beam scintillations. The variations of scintillations against propagation length at different values of displacement and focusing parameters are examined. The(More)
Scintillation aspects of truncated Bessel beams propagated through atmospheric turbulence are investigated using a numerical wave optics random phase screen simulation method. On-axis, aperture averaged scintillation and scintillation relative to a classical Gaussian beam of equal source power and scintillation per unit received power are evaluated. It is(More)