Haley J. Abel

Learn More
Next generation sequencing (NGS), or massively paralleled sequencing, refers to a collective group of methods in which numerous sequencing reactions take place simultaneously, resulting in enormous amounts of sequencing data for a small fraction of the cost of Sanger sequencing. Typically short (50-250 bp), NGS reads are first mapped to a reference genome,(More)
Next-generation sequencing (NGS) has emerged as a powerful technique for the detection of genetic variants in the clinical laboratory. NGS can be performed using DNA from FFPE tissue, but it is unknown whether such specimens are truly equivalent to unfixed tissue for NGS applications. To address this question, we performed hybridization-capture enrichment(More)
A recurrent somatic mutation frequently found in cytogenetically normal acute myeloid leukemia (AML) is internal tandem duplication (ITD) in the fms-related tyrosine kinase 3 gene (FLT3). This mutation is generally detected in the clinical laboratory by PCR and electrophoresis-based product sizing. As the number of clinically relevant somatic mutations in(More)
PURPOSE The present study focuses on the role of CD81, the target of the anti-proliferative antibody (TAPA), in the regulation of the growth of retinal pigment epithelium (RPE). METHODS RPE of 8-day-old rat pups was cultured. The level of CD81 in the cultures was defined by immunoblot methods, and the distribution of the protein was examined using(More)
The identification of recurrent gene rearrangements in the clinical laboratory is the cornerstone for risk stratification and treatment decisions in many malignant tumors. Studies have reported that targeted next-generation sequencing assays have the potential to identify such rearrangements; however, their utility in the clinical laboratory is unknown. We(More)
Currently, oncology testing includes molecular studies and cytogenetic analysis to detect genetic aberrations of clinical significance. Next-generation sequencing (NGS) allows rapid analysis of multiple genes for clinically actionable somatic variants. The WUCaMP assay uses targeted capture for NGS analysis of 25 cancer-associated genes to detect mutations(More)
MOTIVATION Targeted 'deep' sequencing of specific genes or regions is of great interest in clinical cancer diagnostics where some sequence variants, particularly translocations and indels, have known prognostic or diagnostic significance. In this setting, it is unnecessary to sequence an entire genome, and target capture methods can be applied to limit(More)
Although next-generation sequencing (NGS) has been the domain of large genome centers, it is quickly becoming more accessible to general pathology laboratories. In addition to finding single-base changes, NGS allows for the detection of larger structural variants, including insertions/deletions, translocations, and viral insertions. We describe the use of(More)
Merkel cell carcinoma is a highly aggressive cutaneous neuroendocrine tumor that has been associated with Merkel cell polyomavirus in up to 80% of cases. Merkel cell polyomavirus is believed to influence pathogenesis, at least in part, through expression of the large T antigen, which includes a retinoblastoma protein-binding domain. However, there appears(More)
African Americans are admixed with genetic contributions from European and African ancestral populations. Admixture mapping leverages this information to map genes influencing differential disease risk across populations. We performed admixture and association mapping in 3,300 African American current or former smokers from the COPDGene Study. We analyzed(More)