Hakim Mireau

Learn More
The complete sequence of the Arabidopsis thaliana genome revealed thousands of previously unsuspected genes, many of which cannot be ascribed even putative functions. One of the largest and most enigmatic gene families discovered in this way is characterized by tandem arrays of pentatricopeptide repeats (PPRs). We describe a detailed bioinformatic analysis(More)
Eukaryotic cells are divided into multiple membrane-bound compartments, all of which contain proteins. A large subset of these proteins perform functions that are required in more than one compartment. Although in most cases proteins carrying out the same function in different compartments are encoded by different genes, this is not always true. Numerous(More)
Cytoplasmic male sterility is a maternally inherited trait in higher plants that prevents the production of functional pollen. Ogura cytoplasmic male sterility in radish (Raphanus sativus) is regulated by the orf138 mitochondrial locus. Male fertility can be restored when orf138 accumulation is suppressed by the nuclear Rfo locus, which consists of three(More)
Mitochondrial import of a cytoplasmic transfer RNA (tRNA) in yeast requires the preprotein import machinery and cytosolic factors. We investigated whether the tRNA import pathway can be used to correct respiratory deficiencies due to mutations in the mitochondrial DNA and whether this system can be transferred into human cells. We show that cytoplasmic(More)
In plants, all aminoacyl-tRNA synthetases are nuclearly encoded, despite the fact that their activities are required in the three protein-synthesizing cell compartments (cytosol, mitochondria, and chloroplasts). To investigate targeting of these enzymes, we cloned cDNAs encoding alanyl-tRNA synthetase (AlaRS) and the corresponding nuclear gene, ALATS, from(More)
In the last years, a number of nuclear genes restoring cytoplasmic male sterility (CMS) have been cloned in various crop species. The majority of these genes have been shown to encode pentatricopeptide repeat proteins (PPR) that act by specifically suppressing the expression of sterility-causing mitochondrial transcripts. Functional analysis of these(More)
Gene expression in plant mitochondria involves a complex collaboration of transcription initiation and termination, as well as subsequent mRNA processing to produce mature mRNAs. In this study, we describe the function of the Arabidopsis mitochondrial stability factor 1 (MTSF1) gene and show that it encodes a pentatricopeptide repeat protein essential for(More)
The function of pentatricopeptide repeat (PPR) proteins has been associated with various post-transcriptional steps of organelle gene expression. Among them, translation and its regulation are essential processes. However, in plant mitochondria, they are also the steps of gene expression that are the least understood. In this study, PPR336 was identified as(More)
The pentatricopeptide repeat (PPR) proteins represent a large family of RNA-binding proteins that have many roles in post-transcriptional RNA processes within plant organelles. Among the PPR proteins that target plant mitochondria, the restorer-of-fertility (Rf) proteins are characterized by their inhibitory action on mitochondrion-localized cytoplasmic(More)
The expression of the filamentous haemagglutinin (FhaB) of Bordetella pertussis is positively regulated by the bvg locus which encodes a transcriptional activator, BvgA, and a transmembrane sensor protein, BvgS. The gene encoding FhaB, fhaB alone, is not expressed in Escherichia coli, but the introduction of the bvg locus in trans can restore fhaB(More)