Hajime Kita

Learn More
This paper discusses the self-adaptive mechanisms of evolution strategies (ES) and real-coded genetic algorithms (RCGA) for optimization in continuous search spaces. For multi-membered evolution strategies, a self-adaptive mechanism of mutation parameters has been proposed by Schwefel. It introduces parameters such as standard deviations of the normal(More)
The problem of inverting trained feedforward neural networks is to find the inputs which yield a given output. In general, this problem is an ill-posed problem because the mapping from the output space to the input space is a one-to-many mapping. In this paper, we present a method for dealing with the inverse problem by using mathematical programming(More)