Learn More
The design of micro- or nanoparticles that can encapsulate sensitive molecules such as drugs, hormones, proteins or peptides is of increasing importance for applications in biotechnology and medicine. Examples are micelles, liposomes and vesicles. The tiny and, in most cases, hollow spheres are used as vehicles for transport and controlled administration of(More)
MiR-211 has strong inhibitive effects on melanoma cell growth, invasion and metastasis. However, how it is downregulated and whether other genes are involved its downstream regulation in melanoma are not clear. In this study, we firstly verified the expression of miR-211 in melanoma cell lines and observed that its downregulation is associated with(More)
An integral asymmetric membrane was fabricated in a fast and one-step process by combining the self-assembly of an amphiphilic block copolymer (PS-b-P4VP) with nonsolvent-induced phase separation. The structure was found to be composed of a thin layer of densely packed highly ordered cylindrical channels with uniform pore sizes perpendicular to the surface(More)
In this study, the kinetics of vesicle formation of ABA amphiphilic triblock copolymers from an initially homogeneous state was theoretically and experimentally investigated by adding a selective solvent into the system. The pathway of spontaneous vesicle formation depended greatly on the selective solvent addition rate. At a slow addition rate, the pathway(More)
To date, it is still a challenge to prepare high-flux and highselectivity microporous membranes thinner than 20 nm without introducing defects. In this work, we report for the first time the application of cellulose membranes for selective separation of small molecules. A freestanding cellulose membrane as thin as 10 nm has been prepared through(More)
Multicompartment disks with bumpy edges could be synthesized controllably by dissolving a linear ABC amphiphilic triblock copolymer of polystyrene-b-polybutadiene-b-poly (2-vinylpridine) (PS440-b-PBd1020-b-P2VP114) in selective solvent mixtures of toluene and methanol. The disk size was controllable by the initial copolymer concentration. Diameter of the(More)
The self-assembly of block copolymers is an emerging strategy to produce isoporous ultrafiltration membranes. However, thus far, it has not been possible to bridge the gap from ultra- to nanofiltration and decrease the pore size of self-assembled block copolymer membranes to below 5 nm without post-treatment. It is now reported that the self-assembly of(More)
Novel bump-surface multicompartment micelles formed by a linear amphiphilic ABC triblock copolymer via self-assembly in selective solvent were successfully observed both in simulation and experiment. The results revealed that the block A forms the most inner core, and the blocks B and C form the inner and outer layers, respectively, and the bumps were(More)
Recently two quite different types of "nano-containers" have been recognized as attractive potential drug carriers; these are wormlike filamenteous micelles ("filomicelles") on the one hand and metal organic frameworks on the other hand. In this work we combine these two concepts. We report for the first time the manufacturing of metal organic framework(More)
The combination of nonsolvent-induced phase separation and the self-assembly of block copolymers can lead to asymmetric membranes with a thin highly ordered isoporous skin layer. The effective pore size of such membranes is usually larger than 15 nm. We reduced the pore size of these membranes by electroless gold deposition. We demonstrate that the pore(More)
  • 1