Learn More
Ca2+/calmodulin-dependent kinase II (CaMKII) has been implicated in cardiac hypertrophy and heart failure. We generated mice in which the predominant cardiac isoform, CaMKIIdelta, was genetically deleted (KO mice), and found that these mice showed no gross baseline changes in ventricular structure or function. In WT and KO mice, transverse aortic(More)
The delta(B) and delta(C) splice variants of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII), which differ by the presence of a nuclear localization sequence, are both expressed in cardiomyocytes. We used transgenic (TG) mice and CaMKII expression in cardiomyocytes to test the hypothesis that the CaMKIIdelta(C) isoform regulates cytosolic Ca(2+)(More)
There are a lot of difficulties in the ontology generation from relational database such as unclear generation approaches, un-unified ontology languages and so on. So in order to provide unified ontology and improve the quality of ontology generation, approach proposed in this paper firstly extracts database metadata information from relational database(More)
RATIONALE Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) has been implicated as a maladaptive mediator of cardiac ischemic injury. We hypothesized that the inflammatory response associated with in vivo ischemia/reperfusion (I/R) is initiated through CaMKII signaling. OBJECTIVE To assess the contribution of CaMKIIδ to the development of(More)
The molecular events associated with the development of pathological hypertrophy have been shown to be stimulated through G-protein–coupled receptors that activate Gq signaling pathways in neonatal cardiomyocytes and in transgenic (TG) and knockout mice. We demonstrated that CaMKII, a multifunctional Ca(2+)-regulated protein kinase, was activated through(More)
The small GTPase RhoA serves as a nodal point for signaling through hormones and mechanical stretch. However, the role of RhoA signaling in cardiac pathophysiology is poorly understood. To address this issue, we generated mice with cardiomyocyte-specific conditional expression of low levels of activated RhoA (CA-RhoA mice) and demonstrated that they(More)
As indicated in ancient Chinese medical books, Corydalis yanhusuo has therapeutic effects on cardiovascular diseases. The analgesic effect of this plant has been fully elucidated, and l-tetrahydropalmatine has been shown to be the main active principle. The aim of this investigation was to evaluate its protective effects in a rat heart failure model. Rats(More)
RATIONALE Sustained activation of Gαq transgenic (Gq) signaling during pressure overload causes cardiac hypertrophy that ultimately progresses to dilated cardiomyopathy. The molecular events that drive hypertrophy decompensation are incompletely understood. Ca(2+)/calmodulin-dependent protein kinase II δ (CaMKIIδ) is activated downstream of Gq, and(More)
Chronic activation of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) has been implicated in the deleterious effects of β-adrenergic receptor (β-AR) signaling on the heart, in part, by enhancing RyR2-mediated sarcoplasmic reticulum (SR) Ca(2+) leak. We used CaMKIIδ knockout (CaMKIIδ-KO) mice and knock-in mice with an inactivated CaMKII site S2814 on(More)
Apoptosis is a common pathological feature in acute myocardial infarction (AMI). The infarct size is an important determinant of the prognosis of AMI. In recent years, Chinese medicinal herbs and their extracts have received great attention in prevention of AMI. The aim of this investigation was to evaluate the anti-ischemic effect of total flavones from(More)